A Nonlinear Disturbance Observer-Based Super-Twisting Sliding Mode Controller for a Knee-Assisted Exoskeleton Robot
Abstract
1. Introduction
- A novel control framework is designed which integrates both STSMC and NDO to approximate the external perturbations and improve the robustness of a controlled medical robot.
- Stability analysis of an NDO-based controller is conducted to ensure tracking convergence in the presence of uncertainty.
- Comparative analysis of the NDO-based STSMC and the SMPO-based STSMC algorithms is carried out under unified conditions, including external disturbance, to reveal the differences in robustness and control effort.
2. Materials and Methods
2.1. Mathematical Modeling of an Exoskeleton Knee-Assistive System
2.2. Control Methodology
2.2.1. Nonlinear Disturbance Observer
2.2.2. Super-Twisting Sliding Mode Controller Scheme Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, H. A Large-Scale Prospective Study on Functional Ability and Mortality Following Stroke Based on HRS Data Set: Implications for Rehabilitation. Front. Psychol. 2022, 13, 915653. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Marquez, H.J.; Tavakoli, M. Nonlinear Disturbance Observers: Design and Applications to Euler? Lagrange Systems. IEEE Control Syst. 2017, 37, 50–72. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Xue, Q. Lower limb rehabilitation exoskeleton robot: A review. Adv. Mech. Eng. 2021, 13, 16878140211011862. [Google Scholar] [CrossRef]
- Andersson, R.; Björsell, N.; Systems, E.R. Exoskeleton Robotic Systems; MDPI: Basel, Switzerland, 2024; Volume 12. [Google Scholar] [CrossRef]
- Jayaraman, A.; Marinov, B.; Singh, Y.; Burt, S.; Rymer, W.Z. Current Evidence for Use of Robotic Exoskeletons in Rehabilitation. In Wearable Robotics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 301–310. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Cao, Y.; Zhang, H.-T. Super Twisting Control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles. In Proceedings of the 2019 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Aichi, Japan, 1–4 December 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Aole, S.; Elamvazuthi, I.; Waghmare, L.; Patre, B.; Meriaudeau, F. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Sensors 2020, 20, 3681. [Google Scholar] [CrossRef]
- Ezhilarasi, D.; Nair, A.S. Modeling and Evaluation of Adaptive Super Twisting Sliding Mode Control in Lower Extremity Exoskeleton. Int. J. Precis. Eng. Manuf. Technol. 2021, 8, 901–915. [Google Scholar] [CrossRef]
- Mokhtari, M.; Taghizadeh, M.; Mazare, M. Impedance control based on optimal adaptive high order super twisting sliding mode for a 7-DOF lower limb exoskeleton. Meccanica 2021, 56, 535–548. [Google Scholar] [CrossRef]
- Rastegar, M.; Kobravi, H.R. A Hybrid-FES Based Control System for Knee Joint Movement Control. Basic Clin. Neurosci. J. 2021, 12, 441–452. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, X.-C.; Wu, Z.-Q.; Liu, X.; Huang, D.-Q. Disturbance-observer-based Neural Sliding Mode Repetitive Learning Control of Hydraulic Rehabilitation Exoskeleton Knee Joint with Input Saturation. Int. J. Control. Autom. Syst. 2022, 20, 4026–4036. [Google Scholar] [CrossRef]
- Jin, X.; Guo, J. Disturbance rejection model predictive control of lower limb rehabilitation exoskeleton. Sci. Rep. 2023, 13, 19463. [Google Scholar] [CrossRef]
- Al-Dujaili, A.Q.; Hasan, A.F.; Humaidi, A.J.; Al-Jodah, A. Anti-disturbance control design of Exoskeleton Knee robotic system for rehabilitative care. Heliyon 2024, 10, e28911. [Google Scholar] [CrossRef]
- He, D.; Wang, H.; Tian, Y. Model-free super-twisting terminal sliding mode controller using sliding mode disturbance observer for n-DOF upper-limb rehabilitation exoskeleton with backlash hysteresis. Int. J. Control. 2024, 97, 756–772. [Google Scholar] [CrossRef]
- Alawad, N.A.; Humaidi, A.J.; Alaraji, A.S. Design of Active Disturbance Rejection Control for Rehabilitation-Assistant Device of Lower Limbs under Cross Coupling Effect. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 7388–7398. [Google Scholar] [CrossRef]
- Qin, L.; Jiang, Z.; He, Z.; Yin, Y.; Ma, J.; Dai, J.; Li, W.; Zhang, Y. Super-Twisting Sliding Mode Control Strategy for Exoskeleton Joint Motor Based on Load Observer. J. Electr. Eng. Technol. 2025, 20, 2407–2417. [Google Scholar] [CrossRef]
- Espinosa-Espejel, K.I.; Rosales-Luengas, Y.; Salazar, S.; Lopéz-Gutiérrez, R.; Lozano, R. Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton. Sensors 2024, 24, 6546. [Google Scholar] [CrossRef] [PubMed]
- Tiaiba, H.; Daachi, M.E.H.; Madani, T. Real-time adaptive super twisting algorithm based on PSO algorithm: Application for an exoskeleton robot. Robotica 2024, 42, 1816–1841. [Google Scholar] [CrossRef]
- Chen, N.; Wang, J.; Yun, L.; Zou, J.; Zhang, C. Research on Trajectory Tracking Control of Lower Limb Exoskeleton Based on Fractional Order Sliding Mode and Disturbance Observer. Adv. Theory Simul. 2025, 8, e00849. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Liang, P.; Ye, R. Dynamics Modeling and Control Strategy Research on Multi-Joint Soft Lower Limb Assistive Exoskeletons. J. Mech. Robot. 2025, 17, 071011. [Google Scholar] [CrossRef]
- Ridha, M.T.; Al-Samarraie, S.A. A Barrier Function-Based Integral Sliding Mode Control of Heart Rate During Treadmill Exercise. Math. Model. Eng. Probl. 2023, 10, 179–188. [Google Scholar] [CrossRef]
- Hamoudi, A.K.; Rasheed, L.T. Design of an Adaptive Integral Sliding Mode Controller for Position Control of Electronic Throttle Valve. J. Eur. Des Systèmes Autom. 2024, 57, 729–735. [Google Scholar] [CrossRef]
- Al-Tamimi, A.; MohammadRidha, T. Adaptive Sliding Mode Control for Structural Vibration Using Magnetorheological Damper. J. Robot. Control. (JRC) 2025, 6, 1308–1315. [Google Scholar]
- Husain, S.S.; Al-Dujaili, A.Q.; Jaber, A.A.; Humaidi, A.J.; Al-Azzawi, R.S. Design of a Robust Controller Based on Barrier Function for Vehicle Steer-by-Wire Systems. World Electr. Veh. J. 2024, 15, 17. [Google Scholar] [CrossRef]
- Ali, L.F.; AL-Samarraie, S.A.; Humaidi, A.J. Performance of Double Pipe Heat Exchanger—Partially Occupied by Metal Foam—Is Better Enhanced Using Robust Adaptive Barrier Function-Based Sliding Mode Control. Energies 2025, 18, 4671. [Google Scholar] [CrossRef]
- Rasheed, L.T. Performance of the adaptive sliding mode control scheme for output voltage control of the DC/DC buck converter system. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012118. [Google Scholar] [CrossRef]
- Al-Tamimi, A.; MohammadRidha, T. Comparison of Adaptive Sliding Mode Controllers in Earthquake Induced Vibrations. J. Robot. Control. (JRC) 2025, 6, 1041–1050. [Google Scholar] [CrossRef]
- Abbas, S.J.; Husain, S.S.; Al-Wais, S.; Humaidi, A.J. Adaptive Integral Sliding Mode Controller (SMC) Design for Vehicle Steer-by-Wire System. SAE Int. J. Veh. Dyn. Stab. NVH 2024, 8, 383–396. [Google Scholar] [CrossRef]
- AL-Samarraie, S.A.; Mahdi, S.M.; Ridha, T.M.M.; Mishary, M.H. Sliding mode control for electro-hydraulic servo system. Iraqi J. Comput. Commun. Control Syst. Eng. 2015, 15, 1–10. [Google Scholar]
- Sherwani, K.I.K.; Kumar, N.; Chemori, A.; Khan, M.; Mohammed, S. RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Rob. Auton. Syst. 2020, 124, 103354. [Google Scholar] [CrossRef]
- Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J.; Saeed, N. Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations. World Electr. Veh. J. 2024, 15, 419. [Google Scholar] [CrossRef]
- Merazka, L.; Zouari, F.; Boulkroune, A. High-gain observer-based adaptive fuzzy control for a class of multivariable nonlinear systems. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017. [Google Scholar]
- Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J. Ultimate bounded observer-based control of electrical vehicle driven by DC motor system with unmatched load torque. Adv. Mech. Eng. 2024, 16, 16878132241273549. [Google Scholar] [CrossRef]
- Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J. One-Instant Flux Observer design for Three-Phase induction motor with reduced bound active load rejection speed controller. An. Da Acad. Bras. Cienc. 2024, 96, e20240539. [Google Scholar] [CrossRef]
- Boulkroune, A.; Hamel, S.; Zouari, F.; Boukabou, A. Output-Feedback Controller Based Projective Lag-Synchronization of Uncertain Chaotic Systems in the Presence of Input Nonlinearities. Math. Probl. Eng. 2017, 2017, 8045803. [Google Scholar] [CrossRef]
- Waheed, Z.A.; Humaidi, A.J.; Sadiq, M.E.; Al-Qassar, A.A.; Hasan, A.F.; Al-Dujaili, A.Q.; Ajel, A.R.; Abbas, S.J. Control Of Elbow Rehabilitation System Based on Optimal-Tuned Backstepping Sliding Mode Controller. J. Eng. Sci. Technol. 2023, 18, 584–603. [Google Scholar]
- Haddad, M.; Zouari, F.; Boulkroune, A.; Hamel, S. Variable-structure backstepping controller for multivariable nonlinear systems with actuator nonlinearities based on adaptive fuzzy system. Soft Comput. 2019, 23, 12277–12293. [Google Scholar] [CrossRef]
- Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J. A novel control solution to nonlinear systems of unmatched perturbations with unknown bounds. Meas. Control. 2024, 58, 486–501. [Google Scholar] [CrossRef]
- Atiyah, H.A.; Hassan, M.Y. Outdoor Localization for a Mobile Robot under Different Weather Conditions Using a Deep Learning Algorithm. J. Eur. Syst. Autom. 2023, 56, 1–9. [Google Scholar] [CrossRef]
- Ghane, R.G.; Hassan, M.Y. Advanced Hybrid Nonlinear Control for Morphing Quadrotors. Math. Model. Eng. Probl. 2023, 10, 1216–1224. [Google Scholar] [CrossRef]
- Luning, M.A.; Xiao, Y.; Dongya, Z.; Spurgeon, S.K. Disturbance observer based sliding mode control for a continuous stirred tank reactor (CSTR). In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3748–3753. [Google Scholar]
- Feng, Z.; Fei, J. Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope. PLoS ONE 2018, 13, e0189457. [Google Scholar] [CrossRef]
- AL-Samarraie, S.A.; Salman, S.D. Backstepping nonlinear control for blood glucose based on sliding mode meal observer. Al-Nahrain J. Eng. Sci. 2018, 21, 436–444. [Google Scholar] [CrossRef]
- Raheem, R.S.; Hassan, M.Y.; Kadhim, S.K. Particle swarm optimization based interval type 2 fuzzy logic control for motor rotor position control of artificial heart pump. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 814–824. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, O.; Gao, Y.; Zhao, Y.; Sun, Y.; Liu, J. Adaptive Neural Network-Based Fixed-Time Control for Trajectory Tracking of Robotic Systems. IEEE Trans. Circuits Syst. II: Express Briefs 2023, 70, 241–245. [Google Scholar] [CrossRef]
- Liu, J. Predefined-Time Reliable Control for Robotic Systems with Prescribed Performance. IEEE Trans. Ind. Electron. 2025, 72, 11695–11703. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhang, O.; Zhao, Y.; Chen, W.; Gao, Y. Adaptive Disturbance Observer-Based Fixed-Time Tracking Control for Uncertain Robotic Systems. IEEE Trans. Ind. Electron. 2024, 71, 14823–14831. [Google Scholar] [CrossRef]







| Parameters | Value |
|---|---|
| Gravity Torque | |
| Solid Friction Coefficient | |
| Viscous Friction Coefficient | |
| Inertia |
| STSMC | STSMC-Based SMPO | STSMC-Based NDO | |||
|---|---|---|---|---|---|
| Parameter | Value | Parameter | Value | Parameter | Value |
| 8.3015 | 8.3015 | 8.3015 | |||
| 4.9998 | 4.9998 | 4.9998 | |||
| 3.3176 | 3.3176 | 3.3176 | |||
| ------ | ------ | 10.8517 | 150 | ||
| ------ | ------ | 37.6018 | ------ | ------ | |
| ------ | ------ | 0.0072 | ------ | ------ | |
| Controller | ITAE | RMSE | RMSDE |
|---|---|---|---|
| STSMC | 1.2874 | 0.0467 | ----- |
| STSMC based on NDO | 0.0468 | 0.0455 | 0.0686 |
| STSMC based on SMO | 0.0529 | 0.0462 | 0.0878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Raheem, F.A.; Hasan, A.F.; Flaieh, E.H.; Humaidi, A.J. A Nonlinear Disturbance Observer-Based Super-Twisting Sliding Mode Controller for a Knee-Assisted Exoskeleton Robot. Automation 2026, 7, 23. https://doi.org/10.3390/automation7010023
Raheem FA, Hasan AF, Flaieh EH, Humaidi AJ. A Nonlinear Disturbance Observer-Based Super-Twisting Sliding Mode Controller for a Knee-Assisted Exoskeleton Robot. Automation. 2026; 7(1):23. https://doi.org/10.3390/automation7010023
Chicago/Turabian StyleRaheem, Firas Abdulrazzaq, Alaq F. Hasan, Enass H. Flaieh, and Amjad J. Humaidi. 2026. "A Nonlinear Disturbance Observer-Based Super-Twisting Sliding Mode Controller for a Knee-Assisted Exoskeleton Robot" Automation 7, no. 1: 23. https://doi.org/10.3390/automation7010023
APA StyleRaheem, F. A., Hasan, A. F., Flaieh, E. H., & Humaidi, A. J. (2026). A Nonlinear Disturbance Observer-Based Super-Twisting Sliding Mode Controller for a Knee-Assisted Exoskeleton Robot. Automation, 7(1), 23. https://doi.org/10.3390/automation7010023

