Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Photochemical Condition
3.2. Thermal Condition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hintermann, L.; Labonne, A. Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis 2007, 8, 1121. [Google Scholar] [CrossRef][Green Version]
- Salvio, R.; Basseti, M. Sustainable hydration of alkynes promoted by first row transition metal complexes. Background, highlights and perspectives. Inorganica Chim. Acta 2021, 522, 120288. [Google Scholar] [CrossRef]
- Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Highly Efficient AuI-Catalyzed Hydration of Alkynes. Angew. Chem. 2002, 114, 4745. [Google Scholar] [CrossRef]
- Ali, M.; Srivastava, A.K.; Siangwata, S.; Smith, G.S.; Joshi, R.K. Photo induced alkyne hydration reactions mediated by a water soluble, reusable Rhodium (I) catalyst. Catal. Commun. 2018, 115, 78. [Google Scholar] [CrossRef]
- Halpern, J.; James, B.R.; Kemp, A.L.W. Catalysis of The Hydration Of Acetylenic Compounds By Ruthenium(III) Chloride. J. Am. Chem. Soc. 1961, 83, 4097. [Google Scholar] [CrossRef]
- Halpern, J.; James, B.R.; Kemp, A.L.W. Formation and Properties of Some Chlorocarbonyl Complexes of Ruthenium(II) and Ruthenium(III). J. Am. Chem. Soc. 1966, 88, 5142. [Google Scholar] [CrossRef]
- Grotjahn, D.B.; Incarvito, C.D.; Rheingold, A.L. Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angew. Chem. Int. Ed. 2001, 40, 3884. [Google Scholar] [CrossRef]
- Tokunaga, M.; Wakatsuki, Y. The First Anti-Markovnikov Hydration of Terminal Alkynes: Formation of Aldehydes Catalyzed by a Ruthenium(II)/Phosphane Mixture. Angew. Chem. Int. Ed. 1998, 37, 2867. [Google Scholar] [CrossRef]
- Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Ruthenium Complex-Catalyzed anti-Markovnikov Hydration of Terminal Alkynes. Org. Lett. 2001, 3, 735. [Google Scholar] [CrossRef]
- Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. Ruthenium-Catalyzed Hydration of 1-Alkynes to Give Aldehydes: Insight into anti-Markovnikov Regiochemistry. J. Am. Chem. Soc. 2001, 123, 11917. [Google Scholar] [CrossRef]
- Hiscox, W.; Jennings, P.W. Synthesis and reactions of nickel and palladium carbon-bound enolate complexes. Organometallics 1990, 9, 1997. [Google Scholar] [CrossRef]
- Baidossi, W.; Lahav, M.; Blum, J. Hydration of Alkynes by a PtCl4−CO Catalyst. J. Org. Chem. 1997, 62, 669. [Google Scholar] [CrossRef]
- Francisco, L.W.; Moreno, D.A.; Atwood, J.D. Synthesis, Characterization, and Reaction Chemistry of PtCl2[P(m-C6H4SO3Na)3]2, an Alkyne Hydration Catalyst. Organometallics 2001, 20, 4237. [Google Scholar] [CrossRef]
- Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. J. Org. Chem. 1991, 56, 3729. [Google Scholar] [CrossRef]
- Fukuda, Y.; Utimoto, K. Efficient transformation of methyl propargyl ethers into α, β-unsaturated ketones. Bull. Chem. Soc. Jpn. 1991, 64, 2013. [Google Scholar] [CrossRef]
- Imi, K.; Imai, K.; Utimoto, K. Regioselective hydration of alkynones by palladium catalysis. Tetrahedron Lett. 1987, 28, 3127. [Google Scholar] [CrossRef]
- Meier, K.; Marsella, J.A. Hydration of acetylenic compounds without using mercury. J. Mol. Catal. 1993, 78, 31. [Google Scholar] [CrossRef]
- Ghosh, N.; Nayak, S.; Sahoo, A.K. Gold-Catalyzed Regioselective Hydration of Propargyl Acetates Assisted by a Neighboring Carbonyl Group: Access to α-Acyloxy Methyl Ketones and Synthesis of (±)-Actinopolymorphol B. J. Org. Chem. 2011, 76, 500. [Google Scholar] [CrossRef]
- Leyva, A.; Corma, A. Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. J. Org. Chem. 2009, 74, 2067. [Google Scholar] [CrossRef]
- Nun, P.; Ramón, R.S.; Gaillard, S.; Nolan, S.P. Efficient silver-free gold (I)-catalyzed hydration of alkynes at low catalyst loading. J. Organomet. Chem. 2011, 696, 7. [Google Scholar] [CrossRef]
- Li, F.; Wang, N.; Lu, L.; Zhu, G. Regioselective Hydration of Terminal Alkynes Catalyzed by a Neutral Gold(I) Complex [(IPr)AuCl] and One-Pot Synthesis of Optically Active Secondary Alcohols from Terminal Alkynes by the Combination of [(IPr)AuCl] and Cp*RhCl[(R,R)-TsDPEN]. J. Org. Chem. 2015, 80, 3538. [Google Scholar] [CrossRef]
- Gatto, M.; Baratta, W.; Belanzoni, P.; Belpassi, L.; Zotto, A.D.; Tarantelli, F.; Zuccaccia, D. Hydration and alkoxylation of alkynes catalyzed by NHC–Au–OTf. Green Chem. 2018, 20, 2125. [Google Scholar] [CrossRef]
- Thuong, M.B.T.; Mann, A.; Wagner, A. Mild chemo-selective hydration of terminal alkynes catalysed by AgSbF6. Chem. Commun. 2012, 48, 434. [Google Scholar] [CrossRef] [PubMed]
- Damiano, J.P.; Pastel, M. FeCl3 H2O: A specific system for arylacetylene hydration. J. Organomet. Chem. 1996, 522, 303. [Google Scholar] [CrossRef]
- Wu, X.; Bezier, D.; Darcel, C. Development of the First Iron Chloride Catalyzed Hydration of Terminal Alkynes. Adv. Synth. Catal. 2009, 351, 367. [Google Scholar] [CrossRef]
- Antonino, J.R.C.; Perez, A.L.; Corma, A. Regioselective hydration of alkynes by iron (III) Lewis/Brønsted catalysis. Chem. Eur. J. 2012, 18, 11107. [Google Scholar] [CrossRef]
- Bassetti, M.; Ciceri, S.; Lancia, F.; Pasquini, C. Hydration of aromatic terminal alkynes catalyzed by iron (III) sulfate hydrate under chlorine-free conditions. Tetrahedron Lett. 2014, 55, 1608. [Google Scholar] [CrossRef]
- Hou, S.; Yang, H.; Cheng, B.; Zhai, H.; Li, Y. Cobaloxime-catalyzed hydration of terminal alkynes without acidic promoters. Chem. Commun. 2017, 53, 6926. [Google Scholar] [CrossRef]
- Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. Hydration of terminal alkynes catalyzed by water-soluble cobalt porphyrin complexes. J. Am. Chem. Soc. 2013, 135, 50. [Google Scholar] [CrossRef]
- Jin, X.; Oishi, T.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed efficient hydration of alkynes to ketones by tin–tungsten mixed oxides. Chem. Eur. J. 2011, 17, 1261. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, W.; Li, H. Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO3H Functionalized Periodic Mesoporous Organosilica. J. Am. Chem. Soc. 2011, 133, 11632. [Google Scholar] [CrossRef]
- Venkateswara Rao, K.T.; Sai Prasad, P.S.; Lingaiah, N. Solvent-free hydration of alkynes over a heterogeneous silver exchanged silicotungstic acid catalyst. Green Chem. 2012, 14, 1507. [Google Scholar] [CrossRef]
- Liang, S.; Jasinski, J.; Hammond, G.B.; Xu, B. Supported gold nanoparticle-catalyzed hydration of alkynes under basic conditions. Org. Lett. 2015, 17, 162. [Google Scholar] [CrossRef]
- Rostamizadeh, H.; Estiri, S.; Azad, M. Au anchored to (α-Fe2O3)-MCM-41-HS as a novel magnetic nanocatalyst for water-medium and solvent-free alkyne hydration. Catal. Commun. 2014, 57, 29. [Google Scholar] [CrossRef]
- Zhao, Z.; Ran, J. Sulphated mesoporous La2O3–ZrO2 composite oxide as an efficient and reusable solid acid catalyst for alkenylation of aromatics with phenylacetylene. Appl. Catal. A Gen. 2015, 503, 77. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Z.; Chen, Y.; Lin, W. Highly Efficient Cooperative Catalysis by CoIII(Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 13739. [Google Scholar] [CrossRef]
- Gonell, F.; Portehault, D.; Julián-López, K.; Vallé, B.; Sanchez, C.; Corma, A. One step microwave-assisted synthesis of nanocrystalline WO x–ZrO 2 acid catalysts. Catal. Sci. Technol. 2016, 6, 8257. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ali, M.; Siangwata, S.; Satrawala, N.; Smith, G.S.; Joshi, R.K. Multitasking FeOCN Composite as an Economic, Heterogeneous Catalyst for 1-Octene Hydroformylation and Hydration Reactions. Asian J. Org. Chem. 2020, 9, 377. [Google Scholar] [CrossRef]
- Vasudevan, A.; Verzal, M.K. Neutral, metal-free hydration of alkynes using microwave irradiation in superheated water. SYNLETT 2004, 4, 631. [Google Scholar] [CrossRef]
- Ali, M.; Srivastava, A.K.; Joshi, R.K. Metal/catalyst/reagent free hydration of alkynes up to gram scale under temperature and pressure controlled condition. Tetrahedron Lett. 2018, 59, 2075. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Wang, Z.; Fu, X. Visible light promoted hydration of alkynes catalyzed by rhodium (III) porphyrins. Chem. Commun. 2015, 51, 11896. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Jiang, D.; Li, S.; Shu, X.; Li, H.; Zhang, A.; Xu, J.; Ni, B. Visible light promoted copper-catalyzed Markovnikov hydration of alkynes at room temperature. Tetrahedron Lett. 2017, 58, 1156. [Google Scholar] [CrossRef]
- Mathur, P.; Joshi, R.K.; Jha, B.; Singh, A.K.; Mobin, S.M. Towards the catalytic formation of α, β-vinylesters and alkoxy substituted γ-lactones. J. Organomet. Chem. 2010, 695, 2687. [Google Scholar] [CrossRef]
- Mathur, P.; Joshi, R.K.; Rai, B.; Jha, D.K.; Mobin, S.M. One pot synthesis of maleimide and hydantoin by Fe(CO)5 catalyzed [2 + 2 + 1] co-cyclization of acetylene, isocyanate and CO. Dalton Trans. 2012, 41, 5045. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Jha, B.; Raghuvanshi, A.; Joshi, R.K.; Mobin, S.M. Photolytic reaction of substituted (ethynyl) benzaldehyde and Fe(CO)5: Formation of indenone and chelated iron complexes. J. Organomet. Chem. 2012, 712, 7. [Google Scholar] [CrossRef]
- Mathur, P.; Rai, D.K.; Tauqeer, M.; Joshi, R.K.; Lahiri, G.K.; Mobin, S.M. Synthesis, structure and redox property of first 1, 2, 3-triselenole. J. Organomet. Chem. 2012, 721, 144. [Google Scholar] [CrossRef]
- Jha, B.; Raghuvanshi, A.; Joshi, R.K.; Mobin, S.M.; Mathur, P. A photochemical route to ferrocenyl-substituted ferrapyrrolinone complexes. Appl. Organomet.Chem. 2017, 31, e3805. [Google Scholar] [CrossRef]
- Joshi, R.K.; Satrawala, N. One pot synthesis of important retinoid synthon by the catalytic regioselective bi-functionalization of acetylenes, alcohol and carbon monoxide. Tetrahedron Lett. 2017, 58, 2931. [Google Scholar] [CrossRef]
- Lapidus, A.L.; Savelev, M.M. Metal carbonyl catalysts of the synthesis of organic compounds from carbon monoxide and molecular hydrogen. Russ. Chem. Rev. 1988, 57, 17. [Google Scholar] [CrossRef]
- Zhu, L.; Yempally, V.; Isrow, D.; Pellechia, P.J.; Captain, B. Selective benzylic C–H activation of solvent toluene and m-xylene by an iron–tin cluster complex: Fe2(μ-Sn )2(CO)8. J. Organomet. Chem. 2010, 695, 1. [Google Scholar] [CrossRef]
- Kaisare, A.A.; Jr, O.S.; Valente, E.J.; Gray, G.M. Metallacrown ethers with a symmetric bis(phosphite) ligand derived from 1,2-bis-(2-hydroxyethoxy)benzene: Synthesis, characterization and hydroformylation of styrene. J. Organomet. Chem. 2010, 695, 2658. [Google Scholar] [CrossRef]
- Tan, G.; Szilvási, T.; Inoue, S.; Blom, B.; Driess, M. An Elusive Hydridoaluminum(I) Complex for Facile C–H and C–O Bond Activation of Ethers and Access to Its Isolable Hydridogallium(I) Analogue: Syntheses, Structures, and Theoretical Studies. J. Am. Chem. Soc. 2014, 136, 9732. [Google Scholar] [CrossRef]
- Pandey, S.; Raj, K.V.; Shinde, D.R.; Vanka, K.; Kashyap, V.; Kurungot, S.; Vinod, C.P.; Chikkali, S.H. Iron catalyzed hydroformylation of alkenes under mild conditions: Evidence of an Fe (II) catalyzed process. J. Am. Chem. Soc. 2018, 140, 4430. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.F. Copper/iron co-catalyzed alkoxycarbonylation of unactivated alkyl bromides. Commun. Chem. 2018, 1, 39. [Google Scholar] [CrossRef][Green Version]
- Iwasaki, M.; Miki, N.; Ikemoto, Y.; Ura, Y.; Nishihara, Y. Regioselective Synthesis of γ-Lactones by Iron-Catalyzed Radical Annulation of Alkenes with α-Halocarboxylic Acids and Their Derivatives. Org. Lett. 2018, 20, 3848. [Google Scholar] [CrossRef]
- Xu, K.; Peng, H.; Lam, J.W.Y.; Poon, T.W.H.; Dong, Y.; Xu, H.; Sun, Q.; Cheuk, K.K.L.; Salhi, F.; Lee, P.P.S.; et al. Transition metal carbonyl catalysts for polymerizations of substituted acetylenes. Macromolecules 2000, 33, 6918. [Google Scholar] [CrossRef]
- Masuda, T.; Kuwane, Y.; Yamamoto, K.; Higashimura, T. Polymerization of acetylene derivatives induced by UV irradiation via metal carbonyls. Polym. Bull. 1980, 2, 823. [Google Scholar] [CrossRef]
- Landon, S.J.; Shulman, P.M.; Geoffrey, G.L. Photoassisted polymerization of terminal alkynes by W (CO) 6 involving catalyst generation by an alkyne to vinylidene ligand rearrangement. J. Am. Chem. Soc. 1985, 107, 6739. [Google Scholar] [CrossRef]
- Sharma, K.N.; Satrawala, N.; Srivastava, A.K.; Ali, M.; Joshi, R.K. Palladium (ii) ligated with a selenated (Se, C NHC, N−)-type pincer ligand: An efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling in water. Org. Biomol. Chem. 2019, 17, 8969. [Google Scholar] [CrossRef]
- Sharma, K.N.; Satrawala, N.; Joshi, R.K. Thioether–NHC-Ligated PdII Complex for Crafting a Filtration-Free Magnetically Retrievable Catalyst for Suzuki–Miyaura Coupling in Water. Eur. J. Inorg. Chem. 2018, 1743. [Google Scholar] [CrossRef]
- Sharma, C.; Srivastava, A.K.; Sharma, K.N.; Joshi, R.K. Half-sandwich (η5-Cp*)Rh(iii) complexes of pyrazolated organo-sulfur/selenium/tellurium ligands: Efficient catalysts for base/solvent free C–N coupling of chloroarenes under aerobic conditions. Org. Biomol. Chem. 2020, 18, 3599. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.N.; Ali, M.; Srivastava, A.K.; Joshi, R.K. (η6-Benzene) Ru (II) half-sandwich complexes of pyrazolated chalcogenoethers for catalytic activation of aldehydes to amides transformation. J. Organomet. Chem. 2019, 879, 69. [Google Scholar] [CrossRef]
- Yao, Q.; Kinney, E.P.; Zheng, C. Selenium-ligated palladium (ii) complexes as highly active catalysts for carbon−carbon coupling reactions: The heck reaction. Org. Lett. 2004, 6, 2997. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.I.M.; Lemke, F.R. Substituent effects in the ruthenium catalyzed hydrosilylation of para-substituted phenylacetylenes. Inorg. Chem. Commun. 2005, 8, 425. [Google Scholar] [CrossRef]
- Eckart, K.; Schwarz, H. Vinyl cation-induced cleavage of the oxygen-carbon bond in ortho-methoxy-substituted phenylacetylenes. J. Mass Spectrom. Ion Process. 1985, 66, 245. [Google Scholar] [CrossRef]
- Ramana, D.V.; Krishna, N.V.S.R. Ortho effects in organic molecules on electron impact: 18—Novel hydrogen transfer from the methoxy group to acetylenic carbon in 2-methoxyphenylacetylene and 2-methoxydiphenylacetylenes. J. Mass Spectrom. 1989, 24, 317. [Google Scholar]
- Dutta, A.K.; Maji, S.K.; Srivastava, D.N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Synthesis of FeS and FeSe Nanoparticles from a Single Source Precursor: A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, and Electrochemical Sensing of H2O2. ACS Appl. Mater. Interfaces 2012, 4, 1919. [Google Scholar] [CrossRef]
- Cong, B.; Sun, S.; Wang, B.; Lv, B.; Zhao, J.; Jin, F.; Jia, J.; Chen, G. Iron selenide nanoparticles-encapsulated within bamboo-like N-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. J. Chem. Eng. 2022, 435, 135185. [Google Scholar] [CrossRef]
- Hou, B.; Benito-Alifonso, D.; Webster, R.F.; Cherns, D.; Galan, M.C.; Fermín, D.J. Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts 2021, 11, 681. [Google Scholar] [CrossRef]
- Oyetunde, T.; Omorogie, M.O.; O’Brien, P. Ferromagnetic FeSe2 from a mixed sulphur-selenium complex of iron [Fe{(SePPh2NPPh2S)2N}3] through pyrolysis. Heliyon 2020, 6, e03763. [Google Scholar] [CrossRef]
- Cho, J.S.; Park, J.; Kang, Y.C. Double-walled iron oxide nanotubes via selective chemical etching and Kirkendall process. Sci. Rep. 2020, 6, 38933. [Google Scholar] [CrossRef]
- Zheng, Q.; Cheng, X.; Li, H. Microwave Synthesis of High Activity FeSe2/C Catalyst toward Oxygen Reduction Reaction. Catalysts 2015, 5, 1079. [Google Scholar] [CrossRef]
- Hieber, W.; Gruber, J. Zur Kenntnis der Eisencarbonylchalkogenide. J. Inorg. Gen. Chem. 1958, 296, 91–103. [Google Scholar] [CrossRef]
- Polin, J.; Schottenberger, H. Conversion of methyl ketones into terminal acetylenes: Ethynylferrocene. Organic Syntheses 1998, 9, 411–414. [Google Scholar]
- Jacubert, M.; Provot, O.; Peyrat, J.F.; Hamze, A.; Brion, J.D.; Alami, M. p-Toluenesulfonic acid-promoted selective functionalization of unsymmetrical arylalkynes: A regioselective access to various arylketones and heterocycles. Tetrahedron 2010, 66, 3775–3787. [Google Scholar] [CrossRef]
- Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Mercuric triflate-TMU catalyzed hydration of terminal alkyne to give methyl ketone under mild conditions. Chem. Lett. 2002, 31, 12–13. [Google Scholar] [CrossRef]
- Jennings, P.W.; Hartman, J.W.; Hiscox, W.C. Alkyne hydration using Pt (II) catalysts. Inorg. Chim. Acta 1994, 222, 317–322. [Google Scholar] [CrossRef]
- Lumbroso, A.; Vautravers, N.R.; Breit, B. Rhodium-Catalyzed Selective anti-Markovnikov Addition of Carboxylic Acids to Alkynes. Org. Lett. 2010, 12, 5498–5501. [Google Scholar] [CrossRef]
- Park, Y.J.; Kwon, B.; Ahn, J.; Lee, H.; Jun, C. Chelation-assisted hydrative dimerization of 1-alkyne forming α, β-enones by an Rh (I) catalyst. J. Am. Chem. Soc. 2004, 126, 13892–13893. [Google Scholar] [CrossRef]
- Manikar, P.S.; Chippala, V.; Chegondi, R.; Chandrasekher, S. Ruthenium(II)-Catalyzed Hydration of Terminal Alkynes in PEG-400. Synlett 2016, 27, 1969–1972. [Google Scholar] [CrossRef][Green Version]
- Kusakabe, T.; Ito, Y.; Kamimura, M.; Shirai, T.; Takahashi, K.; Mochida, T.; Kato, K. Palladium(II) Bis(oxazoline) Complexes that Catalyze the Hydration of Alkynes. Asian J. Org. Chem. 2017, 6, 1086–1090. [Google Scholar] [CrossRef]
- Marion, N.; Ramon, R.S.; Nolan, S.P. [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. J. Am. Chem. Soc. 2009, 131, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. Organometallic gold (III) compounds as catalysts for the addition of water and methanol to terminal alkynes. J. Am. Chem. Soc. 2003, 125, 11925–11935. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yeon, J.; Lee, P.H.; Lee, K. Iron-catalyzed indirect hydration of alkynes in presence of methanesulfonic acid. Tetrahedron Lett. 2013, 54, 4414–4417. [Google Scholar] [CrossRef][Green Version]
Entry | Catalyst | Cat. Amt. (mol%) | Temp. (°C) | Time (min.) | Yield a (%) |
---|---|---|---|---|---|
1. | - | - | −5 | 25 | - |
2. | Fe(CO)5 | 5 | −5 | 25 | - |
3. | Se | 5 | −5 | 25 | - |
4. | Fe2(CO)9 | 5 | −5 | 25 | - |
5. | Fe3(CO)12 | 5 | −5 | 25 | - |
6. | Fe3Se2(CO)9 | 5 | −5 | 25 | 86 |
7. | Fe3S2(CO)9 | 5 | −5 | 25 | 29 |
8. | Fe3Te2(CO)9 | 5 | −5 | 25 | 13 |
9. | Fe3Se2(CO)9 | 1 | −5 | 25 | - |
10. | Fe3Se2(CO)9 | 2 | −5 | 25 | 15 |
11. | Fe3Se2(CO)9 | 3 | −5 | 25 | 65 |
12. | Fe3Se2(CO)9 | 4 | −5 | 25 | 76 |
13. | Fe3Se2(CO)9 | 5 | −5 | 25 | 86 |
14. | Fe3Se2(CO)9 | 6 | −5 | 25 | 86 |
15. | Fe3Se2(CO)9 | 5 | 00 | 25 | 45 |
16. | Fe3Se2(CO)9 | 5 | −5 | 25 | 86 |
17. | Fe3Se2(CO)9 | 5 | −10 | 25 | 86 |
18. | Fe3Se2(CO)9 | 5 | −5 | 10 | 26 |
19. | Fe3Se2(CO)9 | 5 | −5 | 15 | 59 |
20. | Fe3Se2(CO)9 | 5 | −5 | 20 | 76 |
21. | Fe3Se2(CO)9 | 5 | −5 | 25 | 86 |
22. | Fe3Se2(CO)9 | 5 | −5 | 30 | 87 |
Entry | Reactant | Product | Yield a (%) |
---|---|---|---|
1a | 86 | ||
1b | 89 | ||
1c | 84 | ||
1d | 82 | ||
1e | 85 | ||
1f | 86 | ||
1g | 87 | ||
1h | 84 | ||
1i | 86 | ||
1j | 80 | ||
1k | 74 | ||
1l | 75 | ||
1m | 86 | ||
1n | 85 | ||
1o | 80 | ||
1p | 78 | ||
1q | 82 |
Entry | Reactant | Product | Yield a (%) |
---|---|---|---|
2a | 71 | ||
2b | 70 | ||
2c | 73 | ||
2d | 65 | ||
2e | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Srivastava, A.K.; Upadhyay, N.S.; Satrawala, N.; Joshi, R.K. Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster. Organics 2023, 4, 251-264. https://doi.org/10.3390/org4020020
Ali M, Srivastava AK, Upadhyay NS, Satrawala N, Joshi RK. Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster. Organics. 2023; 4(2):251-264. https://doi.org/10.3390/org4020020
Chicago/Turabian StyleAli, Munsaf, Avinash K. Srivastava, Nitinkumar Satyadev Upadhyay, Naveen Satrawala, and Raj K. Joshi. 2023. "Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster" Organics 4, no. 2: 251-264. https://doi.org/10.3390/org4020020
APA StyleAli, M., Srivastava, A. K., Upadhyay, N. S., Satrawala, N., & Joshi, R. K. (2023). Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster. Organics, 4(2), 251-264. https://doi.org/10.3390/org4020020