Machine-Learning-Based Adaptive Wireless Network Selection for Terrestrial and Non-Terrestrial Networks in 5G and Beyond
Abstract
1. Introduction
2. Wireless Communications Channel Models and Environment Awareness
3. Multi-Connectivity Decisions
3.1. Synthetic Data Generation and Features
- –
- Class 1: Terrestrial networks (TN)
- –
- Class 2: Non-Terrestrial networks (NTN)
- –
- Class 3: TN and NTN together (TN-NTN)
3.2. Network Handover Control
Algorithm 1: Proposed feature control algorithm for network handover |
3.3. Classification Decision Method
4. Machine Learning Results
Parameter Sensitivity Analysis
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Telecommunication Union (ITU). IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond; M.2083-0; ITU Publications: Geneva, Switzerland, 2015. [Google Scholar]
- Yazar, A.; Dogan-Tusha, S.; Arslan, H. 6G Vision: An Ultra-Flexible Perspective. ITU J. Future Evol. Technol. 2020, 1, 121–140. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond; M.2160-0; ITU Publications: Geneva, Switzerland, 2023. [Google Scholar]
- International Telecommunication Union (ITU). IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond; M.2150; ITU Publications: Geneva, Switzerland, 2021. [Google Scholar]
- Bor-Yaliniz, I.; Salem, M.; Senerath, G.; Yanikomeroglu, H. Is 5G Ready for Drones: A Look into Contemporary and Prospective Wireless Networks from a Standardization Perspective. IEEE Wirel. Commun. 2019, 26, 18–27. [Google Scholar] [CrossRef]
- Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in 5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200. [Google Scholar] [CrossRef]
- Giordani, M.; Zorzi, M. Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities. IEEE Netw. 2021, 35, 244–251. [Google Scholar] [CrossRef]
- Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Mendoza Montoya, J.F.; Pollin, S.; Haqiqatnejad, A.; Mostaani, A.; et al. Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 2633–2672. [Google Scholar] [CrossRef]
- Özer, M.F.; Yazar, A.; Arslan, H. ML-Based Dynamic Network Switching Framework for Nonterrestrial Networks in 5G and Beyond. IEEE Aerosp. Electron. Syst. Mag. 2025, 40, 42–56. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, G.; Yuan, Y.; Chan, K.Y.; Ma, K.; Guan, X. Robust resource allocation in two-tier NOMA heterogeneous networks toward 5G. Comput. Netw. 2020, 176, 107299. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Zhu, H.; Gomes, N.J.; Cheng, W.; Yue, P.; Yi, X. Machine Learning based Network Planning in Drone Aided Emergency Communications. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Bashir, A.K.; Arul, R.; Basheer, S.; Raja, G.; Jayaraman, R.; Qureshi, N.M.F. An optimal multitier resource allocation of cloud RAN in 5G using machine learning. Trans. Emerg. Telecommun. Technol. 2019, 30, e3627. [Google Scholar] [CrossRef]
- Kato, N.; Fadlullah, Z.M.; Tang, F.; Mao, B.; Tani, S.; Okamura, A.; Liu, J. Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence. IEEE Wirel. Commun. 2019, 26, 140–147. [Google Scholar] [CrossRef]
- Elsayed, M.; Erol-Kantarci, M. Deep Reinforcement Learning for Reducing Latency in Mission Critical Services. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Giuliano, R.; Innocenti, E. Machine Learning Techniques for Non-Terrestrial Networks. Electronics 2023, 12, 652. [Google Scholar] [CrossRef]
- Dahouda, M.K.; Jin, S.; Joe, I. Machine Learning-Based Solutions for Handover Decisions in Non-Terrestrial Networks. Electronics 2023, 12, 1759. [Google Scholar] [CrossRef]
- Spantideas, S.T.; Giannopoulos, A.E.; Trakadas, P. Smart Mission Critical Service Management: Architecture, Deployment Options, and Experimental Results. IEEE Trans. Netw. Serv. Manag. 2025, 22, 1108–1128. [Google Scholar] [CrossRef]
- Toumi, N.; Bagaa, M.; Ksentini, A. Machine Learning for Service Migration: A Survey. IEEE Commun. Surv. Tutor. 2023, 25, 1991–2020. [Google Scholar] [CrossRef]
- Cassiau, N.; Noh, G.; Jaeckel, S.; Raschkowski, L.; Houssin, J.M.; Combelles, L.; Thary, M.; Kim, J.; Dore, J.B.; Laugeois, M. Satellite and Terrestrial Multi-Connectivity for 5G: Making Spectrum Sharing Possible. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 6–9 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Niephaus, C.; Kretschmer, M.; Ghinea, G. QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art. IEEE Commun. Surv. Tutor. 2016, 18, 2415–2441. [Google Scholar] [CrossRef]
- Suer, M.T.; Thein, C.; Tchouankem, H.; Wolf, L. Multi-Connectivity as an Enabler for Reliable Low Latency Communications—An Overview. IEEE Commun. Surv. Tutor. 2020, 22, 156–169. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, X.; He, D.; You, Y.; Song, R. Machine Learning Inspired Codeword Selection For Dual Connectivity in 5G User-Centric Ultra-Dense Networks. IEEE Trans. Veh. Technol. 2019, 68, 8284–8288. [Google Scholar] [CrossRef]
- Tatino, C.; Pappas, N.; Malanchini, I.; Ewe, L.; Yuan, D. Learning-Based Link Scheduling in Millimeter-wave Multi-connectivity Scenarios. In Proceedings of the 2020 IEEE International Conference on Communications (ICC 2020), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, H.; Vahid, S.; Moessner, K. Machine Learning Based RATs Selection Supporting Multi-connectivity for Reliability. In Proceedings of the Cognitive Radio-Oriented Wireless Networks; Kliks, A., Kryszkiewicz, P., Bader, F., Triantafyllopoulou, D., Caicedo, C.E., Sezgin, A., Dimitriou, N., Sybis, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–41. [Google Scholar] [CrossRef]
- Sazak, H.; Yazar, A. Environment-Aware Intelligent Numerology Control Approach for 5G and Beyond Systems. Int. J. Commun. Syst. 2024, 37, e5768. [Google Scholar] [CrossRef]
- Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.C.; Schneckenburger, N. A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles. IEEE Commun. Surv. Tutor. 2019, 21, 2361–2391. [Google Scholar] [CrossRef]
- Kihero, A.B.; Tusha, A.; Arslan, H. Wireless Channel and Interference. In Wireless Communication Signals: A Laboratory-Based Approach; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Matolak, D.W.; Sun, R. Air–ground channel characterization for unmanned aircraft systems—Part I: Methods, measurements, and models for over-water settings. IEEE Trans. Veh. Technol. 2016, 66, 26–44. [Google Scholar] [CrossRef]
- Sun, R.; Matolak, D.W. Air–ground channel characterization for unmanned aircraft systems part II: Hilly and mountainous settings. IEEE Trans. Veh. Technol. 2016, 66, 1913–1925. [Google Scholar] [CrossRef]
- Matolak, D.W.; Sun, R. Air–ground channel characterization for unmanned aircraft systems—Part III: The suburban and near-urban environments. IEEE Trans. Veh. Technol. 2017, 66, 6607–6618. [Google Scholar] [CrossRef]
- Sun, R.; Matolak, D.W.; Rayess, W. Air-ground channel characterization for unmanned aircraft systems—Part IV: Airframe shadowing. IEEE Trans. Veh. Technol. 2017, 66, 7643–7652. [Google Scholar] [CrossRef]
- Yarkan, S.; Arslan, H. Exploiting Location Awareness toward Improved Wireless System Design in Cognitive Radio. IEEE Commun. Mag. 2008, 46, 128–136. [Google Scholar] [CrossRef]
- Ates, H.F.; Hashir, S.M.; Baykas, T.; Gunturk, B.K. Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning. IEEE Access 2019, 7, 101366–101375. [Google Scholar] [CrossRef]
- Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular data using Conditional GAN. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Shwartz-Ziv, R.; Armon, A. Tabular Data: Deep Learning is Not All You Need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
Environment | Path Loss Exponent () |
---|---|
Suburban | 2.54–3.04 |
Urban | 2.20–2.60 |
Near airports | 2.00–2.25 |
Hilly, mountainous | 1.00–1.80 |
Over sea | 0.14–2.46 |
Environment | Path Loss Exponent () |
---|---|
LOS in buildings | 1.50–2.00 |
LOS free space | 2.00 |
In factories | 2.00–3.00 |
Urban area | 2.70–3.50 |
Obstructed in buildings | 4.00–6.00 |
No | Definition | Domain | Type | Channel Relation | Range | Info. Gain |
---|---|---|---|---|---|---|
1 | Geographic Characteristic | Region | Environmental | Extreme environments cause rich multipath. | Extreme (1)– Basic (10) | 0.097 |
2 | Residential Area Plan | Region | Environmental | High possibility of rich multipath environment for urban scenarios. Path loss characteristic changes remarkably. | Urban (1)– Rural (10) | 0.068 |
3 | User Density | Region | Environmental | Spectral efficiency is an important criteria. | Dense (1)– Scarce (10) | 0.028 |
4 | User Mobility | User | Environmental | High mobility may cause Doppler spread. | High (1)– Low (10) | 0.094 |
5 | eMBB Necessity | User | Requirement | To meet the eMBB requirements, low tolerance for the multipath effects. Needs an increased channel capacity. | High (1)– Low (10) | 0.040 |
6 | URLLC Necessity | User | Requirement | To meet the URLLC requirements, less delay spread and Doppler spread. Needs a balance between subcarrier spacing and symbol duration for the waveform. | High (1)– Low (10) | 0.094 |
7 | TN-TP Distance | User | Environmental | Path loss characteristic changes remarkably. High possibility of more interference. | High (1)– Low (10) | 0.115 |
8 | NTN-TP Distance | User | Environmental | Path loss characteristic changes remarkably. High possibility of more interference. | High (1)– Low (10) | 0.110 |
9 | TN-TP LoS Availability | User | Environmental | Path loss characteristic changes remarkably. High possibility of more interference. | High (1)– Low (10) | 0.291 |
Model | The Optimized Hyperparameters | Accuracy | F1 Score |
---|---|---|---|
Gradient Boosting |
| 0.821 | 0.82 |
Neural Networks (NN) |
| 0.777 | 0.775 |
Random Forest |
| 0.774 | 0.773 |
k-Nearest Neighbors (kNN) |
| 0.712 | 0.707 |
Model | Average Inference Latency (ms) | Std. Dev. (ms) |
---|---|---|
Gradient Boosting | 1.50 | 0.20 |
Neural Networks (NN) | 6.70 | 0.50 |
Random Forest | 0.90 | 0.12 |
k-Nearest Neighbors (kNN) | 3.20 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazar, A. Machine-Learning-Based Adaptive Wireless Network Selection for Terrestrial and Non-Terrestrial Networks in 5G and Beyond. Telecom 2025, 6, 71. https://doi.org/10.3390/telecom6040071
Yazar A. Machine-Learning-Based Adaptive Wireless Network Selection for Terrestrial and Non-Terrestrial Networks in 5G and Beyond. Telecom. 2025; 6(4):71. https://doi.org/10.3390/telecom6040071
Chicago/Turabian StyleYazar, Ahmet. 2025. "Machine-Learning-Based Adaptive Wireless Network Selection for Terrestrial and Non-Terrestrial Networks in 5G and Beyond" Telecom 6, no. 4: 71. https://doi.org/10.3390/telecom6040071
APA StyleYazar, A. (2025). Machine-Learning-Based Adaptive Wireless Network Selection for Terrestrial and Non-Terrestrial Networks in 5G and Beyond. Telecom, 6(4), 71. https://doi.org/10.3390/telecom6040071