Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities
Abstract
1. Introduction
2. Theory and Materials
3. Results
3.1. Simulated Results
3.2. Measurement Setup
3.2.1. Material Preparation
3.2.2. Network Analyzer Setup
- Connect waveguide adapters to the empty cavity with shims on either side;
- Save resonant peak data for the empty cavity;
- Disconnect adapters from the cavity;
- Place foam blocks within the cavity;
- Reconnect shims and adapters;
- Save resonant peak data for the cavity filled with foam;
- Disconnect adapters from the cavity;
- Remove foam blocks from the cavity;
- Place the sample within foam blocks;
- Carefully place foam blocks and the sample within the cavity;
- Reconnect adapters to the cavity;
- Save resonant peak data for the cavity filled with foam and the sample material;
- Repeat steps 9 to 12 for each material sample.
3.2.3. Collecting Data
3.3. Measured Results
3.4. Measurement Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shavit, R. Radome Electromagnetic Theory and Design; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Baker-Jarvis, J.; Janezic, M.D.; Degroot, D.C. High-frequency dielectric measurements. IEEE Instrum. Meas. Mag. 2010, 13, 24–31. [Google Scholar] [CrossRef]
- Kumar, C.; Mohammed, H.U.R.; Peake, G. mmWave Radar Radome Design Guide. 2021. Available online: https://www.ti.com/lit/an/swra705/swra705.pdf?ts=1708569361624&ref_url=https%253A%252F%252Fdev.ti.com%252F (accessed on 1 May 2024).
- Yaw, K.C. Measurement of Dielectric Material Properties—Application Note; RAC0607-0019_1_4E; Rohde & Schwarz Report: Munich, Germany, 2012. [Google Scholar]
- Elmelin Marketing. What Are the Types of Dielectric Material? Available online: https://elmelin.com/what-are-the-types-of-dielectric-material/ (accessed on 1 May 2024).
- Kuphaldt, T.R. Lessons in Electric Circuits, 6th ed.; 2021. Available online: https://www.ibiblio.org/kuphaldt/electricCircuits/AC/AC_14.html (accessed on 1 May 2024).
- Poole, I. Waveguide Modes. Electronics Notes. Available online: https://www.electronics-notes.com/articles/antennas-propagation/rf-feeders-transmission-lines/waveguide-modes-te-tm-tem.php (accessed on 1 May 2024).
- Wells, C.G.; Ball, J.A.R. Mode-matching analysis of a shielded rectangular dielectric-rod waveguide. IEEE Trans. Microw. Theory Tech. 2005, 53, 3169–3177. [Google Scholar] [CrossRef]
- Meda, V.; Raghavan, V. An Overview of Dielectric Properties Measuring Techniques. Can. Biosyst. Eng./Le Genie Des. Biosyst. Au Can. 2005, 47, 15–30. [Google Scholar]
- Chung, B.-K. Dielectric constant measurement for thin material at microwave frequencies. Prog. Electromagn. Res. 2007, 75, 239–252. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S.; Ahn, Y. Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv. 2016, 6, 69381–69386. [Google Scholar] [CrossRef]
- Krraoui, H.; Mejri, F.; Aguili, T. Dielectric constant measurement of materials by a microwave technique: Application to the characterization of vegetation leaves. J. Electromagn. Waves Appl. 2016, 30, 1643–1660. [Google Scholar] [CrossRef]
- Zahedi, A.; Boroumand, F.A.; Aliakbrian, H. Analytical transmission line model for complex dielectric constant measurement of thin substrates using T-resonator method. IET Microw. Antennas Propag. 2020, 14, 2027–2034. [Google Scholar] [CrossRef]
- Ma, Z.; Becker, A.J.; Polakos, P.; Huggins, H.; Pastalan, J.; Wu, H.; Watts, K.; Wong, Y.H.; Mankiewich, P. RF measurement technique for characterizing thin dielectric films. IEEE Trans. Electron Devices 1998, 45, 1811–1816. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Addison-Wesley Publishing Company: Boston, MA, USA, 1983. [Google Scholar]
- Easton, C.D.; Jacob, M.V.; Krupka, J. Non-destructive complex permittivity measurement of low permittivity thin film materials. Meas. Sci. Technol. 2007, 18, 2869. [Google Scholar] [CrossRef]
- Krupka, J. Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 2003, 79, 195–198. [Google Scholar] [CrossRef]
- Chung, B.K. A convenient method for complex permittivity measurement of thin materials at microwave frequencies. J. Phys. D Appl. Phys. 2006, 39, 1926. [Google Scholar] [CrossRef]
- Hasar, U.C.; Simsek, O. An accurate complex permittivity method for thin dielectric materials. Prog. Electromagn. Res. 2009, 91, 123–138. [Google Scholar] [CrossRef]
- Dube, D.C.; Lanagan, M.T.; Kim, J.H.; Jang, S.J. Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique. J. Appl. Phys. 1988, 63, 2466–2468. [Google Scholar] [CrossRef]
- Marcuvitz, N. Waveguide Handbook; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Chew, W.C. Lectures on Theory of Microwave and Optical Waveguides; University of Illinois Urbana-Champaign: Champaign, IL, USA.
- Pozar, D.M. Microwave Engineering; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dassault Systemes. “CST Studio Suite”. Available online: https://www.3ds.com/products/simulia/cst-studio-suite (accessed on 1 May 2024).
- extremtextil. Available online: https://www.extremtextil.de/en/ (accessed on 1 May 2024).
- Swift Supplies Online. Available online: https://www.swiftsupplies.com.au/ (accessed on 1 May 2024).
- Ripstop by the Roll. Available online: https://ripstopbytheroll.com/ (accessed on 1 May 2024).
- everythingRF. WR650|WG6|R14-Rectangular Waveguide Size. everythingRF. Available online: https://www.everythingrf.com/tech-resources/waveguides-sizes/wr650 (accessed on 1 May 2024).
- everythingRF. WR137|WG14|R70-Rectangular Waveguide Size. everythingRF. Available online: https://www.everythingrf.com/tech-resources/waveguides-sizes/wr137 (accessed on 1 May 2024).
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House Antennas and Propagation Series; Artech House: Boston, MA, USA, 2009. [Google Scholar]
- Arsenovic, A.; Hillairet, J.; Anderson, J.; Forstén, H.; Rieß, V.; Eller, M.; Sauber, N.; Weikle, R.; Barnhart, W.; Forstmayr, F. scikit-rf: An Open Source Python Package for Microwave Network Creation, Analysis, and Calibration [Speaker’s Corner]. IEEE Microw. Mag. 2022, 23, 98–105. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Measurement Method | Material Types | Assumed Mode |
---|---|---|
Transmission/reflection line | Coaxial line, waveguides | Fundamental |
Open-ended coaxial probe | Liquids, biological specimen, semi-solids | TEM, TE |
Resonant cavity | High temperatures, large/flat solids, gas, hot liquids | TM, TE |
Free-space | Rod-shaped solids, waveguides, liquids | TEM |
Material Name | Simple Name | Thickness (mm) |
---|---|---|
PTFE Coated Glass Fabric * [26] | PTFE Fabric | 0.15 |
Dyneema composite fabric hybrid * [27] | Dyneema | 0.1 |
Polyester, PU-Coated, impregnated, flame retardant, 240 g/sqm [25] | Polyester | 0.19 |
Ecopak EPX70 RS, Ripstop, recycling-backpack-laminate, 171 g/sqm [25] | Ecopak | 0.15 |
Etaproof 200, waterproof cotton, 200 g/sqm, 2nd Choice [25] | Etaproof | 0.27 |
Cordura, 500 den, coated [25] | Cordura | 0.36 |
N-Shell, z-liner pocket lining, 70 g/sqm [25] | N-Shell | 0.3 |
3-layer-laminate, robust, mini-ripstop, 170 g/sqm [25] | 3-LL | 0.3 |
2-layer-laminate, soft, slightly elastic, 105 g/sqm [25] | 2-LL | 0.2 |
Material | Features | ||||
---|---|---|---|---|---|
Flame-Retardant | Waterproof | Windproof | Abrasion Resistant | Inelastic | |
PTFE Fabric * | |||||
Dyneema * | |||||
Polyester | |||||
Ecopak | |||||
Etaproof | |||||
Cordura | |||||
N-Shell | |||||
3-LL | |||||
2-LL |
WR650 (Length = 105 mm) | |||||||
---|---|---|---|---|---|---|---|
Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) |
TE101 | 1.69 | TE323 | 6.25 | TE306 | 8.99 | TE328 | 12.30 |
TE102 | 3.00 | TM323 | 6.25 | TE525 | 9.21 | TM328 | 12.30 |
TE301 | 3.08 | TE503 | 6.25 | TE126 | 9.35 | TE508 | 12.30 |
TE302 | 3.95 | TE304 | 6.33 | TM126 | 9.35 | TE528 | 12.82 |
TE121 | 4.01 | TE522 | 6.48 | TE326 | 9.70 | TE109 | 12.89 |
TM121 | 4.01 | TE124 | 6.83 | TM326 | 9.70 | TE309 | 13.14 |
TE103 | 4.38 | TM124 | 6.83 | TE506 | 9.70 | TE129 | 13.39 |
TE122 | 4.71 | TE105 | 7.20 | TE107 | 10.04 | TM129 | 13.39 |
TM122 | 4.71 | TE523 | 7.23 | TE526 | 10.36 | TE329 | 13.64 |
TE321 | 4.76 | TE324 | 7.30 | TE307 | 10.36 | TM329 | 13.64 |
TM321 | 4.76 | TM324 | 7.30 | TE127 | 10.68 | TE509 | 13.64 |
TE501 | 4.76 | TE504 | 7.30 | TM127 | 10.68 | TE529 | 14.11 |
TE303 | 5.08 | TE305 | 7.65 | TE327 | 10.98 | TE1010 | 14.31 |
TE322 | 5.37 | TE125 | 8.07 | TM327 | 10.98 | TE3010 | 14.54 |
TM322 | 5.37 | TM125 | 8.07 | TE507 | 10.98 | TE1210 | 14.77 |
TE502 | 5.37 | TE524 | 8.15 | TE108 | 11.46 | TM1210 | 14.77 |
TE123 | 5.69 | TE325 | 8.47 | TE527 | 11.57 | TE3210 | 14.99 |
TM123 | 5.69 | TM325 | 8.47 | TE308 | 11.75 | TM3210 | 14.99 |
TE104 | 5.79 | TE505 | 8.47 | TE128 | 12.03 | TE5010 | 14.99 |
TE521 | 5.99 | TE106 | 8.62 | TM128 | 12.03 | TE5210 | 15.42 |
WR137 (Length = 127 mm) | |||||||
---|---|---|---|---|---|---|---|
Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) |
TE101 | 4.46 | TE121 | 19.50 | TE129 | 22.18 | TM326 | 24.03 |
TE102 | 4.91 | TM121 | 19.50 | TM129 | 22.18 | TE327 | 24.41 |
TE103 | 5.58 | TE122 | 19.61 | TE505 | 22.32 | TM327 | 24.41 |
TE104 | 6.39 | TM122 | 19.61 | TE506 | 22.66 | TE5010 | 24.55 |
TE105 | 7.31 | TE123 | 19.79 | TE1210 | 22.77 | TE328 | 24.83 |
TE106 | 8.29 | TM123 | 19.79 | TM1210 | 22.77 | TM328 | 24.83 |
TE107 | 9.32 | TE124 | 20.03 | TE321 | 22.99 | TE329 | 25.30 |
TE108 | 10.38 | TM124 | 20.03 | TM321 | 22.99 | TM329 | 25.30 |
TE109 | 11.47 | TE125 | 20.35 | TE507 | 23.05 | TE3210 | 25.82 |
TE1010 | 12.57 | TM125 | 20.35 | TE322 | 23.08 | TM3210 | 25.82 |
TE301 | 12.97 | TE126 | 20.72 | TM322 | 23.08 | TE521 | 28.72 |
TE302 | 13.13 | TM126 | 20.72 | TE323 | 23.23 | TE522 | 28.80 |
TE303 | 13.39 | TE127 | 21.15 | TM323 | 23.23 | TE523 | 28.92 |
TE304 | 13.75 | TM127 | 21.15 | TE324 | 23.44 | TE524 | 29.09 |
TE305 | 14.20 | TE501 | 21.55 | TM324 | 23.44 | TE525 | 29.30 |
TE306 | 14.73 | TE128 | 21.64 | TE508 | 23.50 | TE526 | 29.56 |
TE307 | 15.33 | TM128 | 21.64 | TE325 | 23.71 | TE527 | 29.87 |
TE308 | 16.00 | TE502 | 21.65 | TM325 | 23.71 | TE528 | 30.21 |
TE309 | 16.73 | TE503 | 21.81 | TE509 | 24.00 | TE529 | 30.60 |
TE3010 | 17.50 | TE504 | 22.03 | TE326 | 24.03 | TE5210 | 31.03 |
Simulated Permittivity | Simulated Loss Tangent | Calculated Permittivity | Calculated Loss Tangent | Permittivity Error (%) | Loss Tangent Error (%) |
---|---|---|---|---|---|
1.5 | 0.1 | 1.4964 | 0.1142 | 0.24 | 14.2 |
0.05 | 1.4888 | 0.0538 | 0.75 | 7.6 | |
0.01 | 1.492 | 0.0106 | 0.53 | 6 | |
0.005 | 1.4929 | 0.0051 | 0.47 | 2 | |
0.001 | 1.4945 | 0.0011 | 0.37 | 10 | |
2.2 | 0.1 | 2.195 | 0.1144 | 0.23 | 14.4 |
0.05 | 2.1944 | 0.0515 | 0.25 | 3 | |
0.01 | 2.195 | 0.0101 | 0.23 | 1 | |
0.005 | 2.1944 | 0.0061 | 0.25 | 22 | |
0.001 | 2.1966 | 0.0011 | 0.15 | 10 | |
2.9 | 0.1 | 2.8888 | 0.1232 | 0.39 | 23.2 |
0.05 | 2.9084 | 0.0589 | 0.29 | 17.8 | |
0.01 | 2.8982 | 0.0111 | 0.06 | 11 | |
0.005 | 2.9035 | 0.0057 | 0.12 | 14 | |
0.001 | 2.9027 | 0.0011 | 0.09 | 10 |
Simulated Permittivity | Simulated Loss Tangent | Calculated Permittivity | Calculated Loss Tangent | Permittivity Error (%) | Loss Tangent Error (%) |
---|---|---|---|---|---|
1.5 | 0.1 | 1.4768 | 0.1216 | 1.55 | 21.6 |
0.05 | 1.4884 | 0.0549 | 0.77 | 9.8 | |
0.01 | 1.4942 | 0.0113 | 0.39 | 13 | |
0.005 | 1.4926 | 0.0054 | 0.49 | 8 | |
0.001 | 1.4926 | 0.0008 | 0.49 | 20 | |
2.2 | 0.1 | 2.1794 | 0.1110 | 0.94 | 11 |
0.05 | 2.1806 | 0.0544 | 0.88 | 8.8 | |
0.01 | 2.1832 | 0.0117 | 0.76 | 17 | |
0.005 | 2.1832 | 0.0048 | 0.76 | 4 | |
0.001 | 2.2105 | 0.00103 | 0.48 | 3 | |
2.9 | 0.1 | 2.8546 | 0.1129 | 1.57 | 12.9 |
0.05 | 2.8482 | 0.0535 | 1.79 | 7 | |
0.01 | 2.8514 | 0.0126 | 1.68 | 26 | |
0.005 | 2.8482 | 0.0054 | 1.79 | 8 | |
0.001 | 2.8449 | 0.0009 | 1.90 | 10 |
Material | Thickness (m) | WR650 (Length = 105 mm) TE101 (fc = 1.65 GHz) | WR137 (Length = 127 mm) TE103 = (fc = 5.575 GHz) | ||||
---|---|---|---|---|---|---|---|
Permittivity | Loss Tangent | Noise (K) | Permittivity | Loss Tangent | Noise (K) | ||
PTFE Fabric * | 0.00015 | 2.9 | 0.0009 | 0.0024 | 2.87 | 0.0044 | 0.0392 |
Dyneema * | 0.0001 | 2.6 | 0.0019 | 0.0032 | 2.58 | 0.0135 | 0.0760 |
N-Shell | 0.0003 | 1.4 | 0.0064 | 0.0236 | 1.4 | 0.0094 | 0.1169 |
3-LL | 0.0003 | 2.09 | 0.0225 | 0.1012 | 1.98 | 0.0244 | 0.3608 |
2-LL | 0.0002 | 1.87 | 0.0208 | 0.0590 | 1.85 | 0.0267 | 0.2545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahms, T.; Hayman, D.B.; Mohamadzade, B.; Smith, S.L. Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom 2024, 5, 706-722. https://doi.org/10.3390/telecom5030035
Dahms T, Hayman DB, Mohamadzade B, Smith SL. Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom. 2024; 5(3):706-722. https://doi.org/10.3390/telecom5030035
Chicago/Turabian StyleDahms, Tayla, Douglas B. Hayman, Bahare Mohamadzade, and Stephanie L. Smith. 2024. "Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities" Telecom 5, no. 3: 706-722. https://doi.org/10.3390/telecom5030035
APA StyleDahms, T., Hayman, D. B., Mohamadzade, B., & Smith, S. L. (2024). Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom, 5(3), 706-722. https://doi.org/10.3390/telecom5030035