Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities
Abstract
:1. Introduction
2. Theory and Materials
3. Results
3.1. Simulated Results
3.2. Measurement Setup
3.2.1. Material Preparation
3.2.2. Network Analyzer Setup
- Connect waveguide adapters to the empty cavity with shims on either side;
- Save resonant peak data for the empty cavity;
- Disconnect adapters from the cavity;
- Place foam blocks within the cavity;
- Reconnect shims and adapters;
- Save resonant peak data for the cavity filled with foam;
- Disconnect adapters from the cavity;
- Remove foam blocks from the cavity;
- Place the sample within foam blocks;
- Carefully place foam blocks and the sample within the cavity;
- Reconnect adapters to the cavity;
- Save resonant peak data for the cavity filled with foam and the sample material;
- Repeat steps 9 to 12 for each material sample.
3.2.3. Collecting Data
3.3. Measured Results
3.4. Measurement Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shavit, R. Radome Electromagnetic Theory and Design; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Baker-Jarvis, J.; Janezic, M.D.; Degroot, D.C. High-frequency dielectric measurements. IEEE Instrum. Meas. Mag. 2010, 13, 24–31. [Google Scholar] [CrossRef]
- Kumar, C.; Mohammed, H.U.R.; Peake, G. mmWave Radar Radome Design Guide. 2021. Available online: https://www.ti.com/lit/an/swra705/swra705.pdf?ts=1708569361624&ref_url=https%253A%252F%252Fdev.ti.com%252F (accessed on 1 May 2024).
- Yaw, K.C. Measurement of Dielectric Material Properties—Application Note; RAC0607-0019_1_4E; Rohde & Schwarz Report: Munich, Germany, 2012. [Google Scholar]
- Elmelin Marketing. What Are the Types of Dielectric Material? Available online: https://elmelin.com/what-are-the-types-of-dielectric-material/ (accessed on 1 May 2024).
- Kuphaldt, T.R. Lessons in Electric Circuits, 6th ed.; 2021. Available online: https://www.ibiblio.org/kuphaldt/electricCircuits/AC/AC_14.html (accessed on 1 May 2024).
- Poole, I. Waveguide Modes. Electronics Notes. Available online: https://www.electronics-notes.com/articles/antennas-propagation/rf-feeders-transmission-lines/waveguide-modes-te-tm-tem.php (accessed on 1 May 2024).
- Wells, C.G.; Ball, J.A.R. Mode-matching analysis of a shielded rectangular dielectric-rod waveguide. IEEE Trans. Microw. Theory Tech. 2005, 53, 3169–3177. [Google Scholar] [CrossRef]
- Meda, V.; Raghavan, V. An Overview of Dielectric Properties Measuring Techniques. Can. Biosyst. Eng./Le Genie Des. Biosyst. Au Can. 2005, 47, 15–30. [Google Scholar]
- Chung, B.-K. Dielectric constant measurement for thin material at microwave frequencies. Prog. Electromagn. Res. 2007, 75, 239–252. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S.; Ahn, Y. Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv. 2016, 6, 69381–69386. [Google Scholar] [CrossRef]
- Krraoui, H.; Mejri, F.; Aguili, T. Dielectric constant measurement of materials by a microwave technique: Application to the characterization of vegetation leaves. J. Electromagn. Waves Appl. 2016, 30, 1643–1660. [Google Scholar] [CrossRef]
- Zahedi, A.; Boroumand, F.A.; Aliakbrian, H. Analytical transmission line model for complex dielectric constant measurement of thin substrates using T-resonator method. IET Microw. Antennas Propag. 2020, 14, 2027–2034. [Google Scholar] [CrossRef]
- Ma, Z.; Becker, A.J.; Polakos, P.; Huggins, H.; Pastalan, J.; Wu, H.; Watts, K.; Wong, Y.H.; Mankiewich, P. RF measurement technique for characterizing thin dielectric films. IEEE Trans. Electron Devices 1998, 45, 1811–1816. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Addison-Wesley Publishing Company: Boston, MA, USA, 1983. [Google Scholar]
- Easton, C.D.; Jacob, M.V.; Krupka, J. Non-destructive complex permittivity measurement of low permittivity thin film materials. Meas. Sci. Technol. 2007, 18, 2869. [Google Scholar] [CrossRef]
- Krupka, J. Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 2003, 79, 195–198. [Google Scholar] [CrossRef]
- Chung, B.K. A convenient method for complex permittivity measurement of thin materials at microwave frequencies. J. Phys. D Appl. Phys. 2006, 39, 1926. [Google Scholar] [CrossRef]
- Hasar, U.C.; Simsek, O. An accurate complex permittivity method for thin dielectric materials. Prog. Electromagn. Res. 2009, 91, 123–138. [Google Scholar] [CrossRef]
- Dube, D.C.; Lanagan, M.T.; Kim, J.H.; Jang, S.J. Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique. J. Appl. Phys. 1988, 63, 2466–2468. [Google Scholar] [CrossRef]
- Marcuvitz, N. Waveguide Handbook; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Chew, W.C. Lectures on Theory of Microwave and Optical Waveguides; University of Illinois Urbana-Champaign: Champaign, IL, USA.
- Pozar, D.M. Microwave Engineering; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dassault Systemes. “CST Studio Suite”. Available online: https://www.3ds.com/products/simulia/cst-studio-suite (accessed on 1 May 2024).
- extremtextil. Available online: https://www.extremtextil.de/en/ (accessed on 1 May 2024).
- Swift Supplies Online. Available online: https://www.swiftsupplies.com.au/ (accessed on 1 May 2024).
- Ripstop by the Roll. Available online: https://ripstopbytheroll.com/ (accessed on 1 May 2024).
- everythingRF. WR650|WG6|R14-Rectangular Waveguide Size. everythingRF. Available online: https://www.everythingrf.com/tech-resources/waveguides-sizes/wr650 (accessed on 1 May 2024).
- everythingRF. WR137|WG14|R70-Rectangular Waveguide Size. everythingRF. Available online: https://www.everythingrf.com/tech-resources/waveguides-sizes/wr137 (accessed on 1 May 2024).
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House Antennas and Propagation Series; Artech House: Boston, MA, USA, 2009. [Google Scholar]
- Arsenovic, A.; Hillairet, J.; Anderson, J.; Forstén, H.; Rieß, V.; Eller, M.; Sauber, N.; Weikle, R.; Barnhart, W.; Forstmayr, F. scikit-rf: An Open Source Python Package for Microwave Network Creation, Analysis, and Calibration [Speaker’s Corner]. IEEE Microw. Mag. 2022, 23, 98–105. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Measurement Method | Material Types | Assumed Mode |
---|---|---|
Transmission/reflection line | Coaxial line, waveguides | Fundamental |
Open-ended coaxial probe | Liquids, biological specimen, semi-solids | TEM, TE |
Resonant cavity | High temperatures, large/flat solids, gas, hot liquids | TM, TE |
Free-space | Rod-shaped solids, waveguides, liquids | TEM |
Material Name | Simple Name | Thickness (mm) |
---|---|---|
PTFE Coated Glass Fabric * [26] | PTFE Fabric | 0.15 |
Dyneema composite fabric hybrid * [27] | Dyneema | 0.1 |
Polyester, PU-Coated, impregnated, flame retardant, 240 g/sqm [25] | Polyester | 0.19 |
Ecopak EPX70 RS, Ripstop, recycling-backpack-laminate, 171 g/sqm [25] | Ecopak | 0.15 |
Etaproof 200, waterproof cotton, 200 g/sqm, 2nd Choice [25] | Etaproof | 0.27 |
Cordura, 500 den, coated [25] | Cordura | 0.36 |
N-Shell, z-liner pocket lining, 70 g/sqm [25] | N-Shell | 0.3 |
3-layer-laminate, robust, mini-ripstop, 170 g/sqm [25] | 3-LL | 0.3 |
2-layer-laminate, soft, slightly elastic, 105 g/sqm [25] | 2-LL | 0.2 |
Material | Features | ||||
---|---|---|---|---|---|
Flame-Retardant | Waterproof | Windproof | Abrasion Resistant | Inelastic | |
PTFE Fabric * | |||||
Dyneema * | |||||
Polyester | |||||
Ecopak | |||||
Etaproof | |||||
Cordura | |||||
N-Shell | |||||
3-LL | |||||
2-LL |
WR650 (Length = 105 mm) | |||||||
---|---|---|---|---|---|---|---|
Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) |
TE101 | 1.69 | TE323 | 6.25 | TE306 | 8.99 | TE328 | 12.30 |
TE102 | 3.00 | TM323 | 6.25 | TE525 | 9.21 | TM328 | 12.30 |
TE301 | 3.08 | TE503 | 6.25 | TE126 | 9.35 | TE508 | 12.30 |
TE302 | 3.95 | TE304 | 6.33 | TM126 | 9.35 | TE528 | 12.82 |
TE121 | 4.01 | TE522 | 6.48 | TE326 | 9.70 | TE109 | 12.89 |
TM121 | 4.01 | TE124 | 6.83 | TM326 | 9.70 | TE309 | 13.14 |
TE103 | 4.38 | TM124 | 6.83 | TE506 | 9.70 | TE129 | 13.39 |
TE122 | 4.71 | TE105 | 7.20 | TE107 | 10.04 | TM129 | 13.39 |
TM122 | 4.71 | TE523 | 7.23 | TE526 | 10.36 | TE329 | 13.64 |
TE321 | 4.76 | TE324 | 7.30 | TE307 | 10.36 | TM329 | 13.64 |
TM321 | 4.76 | TM324 | 7.30 | TE127 | 10.68 | TE509 | 13.64 |
TE501 | 4.76 | TE504 | 7.30 | TM127 | 10.68 | TE529 | 14.11 |
TE303 | 5.08 | TE305 | 7.65 | TE327 | 10.98 | TE1010 | 14.31 |
TE322 | 5.37 | TE125 | 8.07 | TM327 | 10.98 | TE3010 | 14.54 |
TM322 | 5.37 | TM125 | 8.07 | TE507 | 10.98 | TE1210 | 14.77 |
TE502 | 5.37 | TE524 | 8.15 | TE108 | 11.46 | TM1210 | 14.77 |
TE123 | 5.69 | TE325 | 8.47 | TE527 | 11.57 | TE3210 | 14.99 |
TM123 | 5.69 | TM325 | 8.47 | TE308 | 11.75 | TM3210 | 14.99 |
TE104 | 5.79 | TE505 | 8.47 | TE128 | 12.03 | TE5010 | 14.99 |
TE521 | 5.99 | TE106 | 8.62 | TM128 | 12.03 | TE5210 | 15.42 |
WR137 (Length = 127 mm) | |||||||
---|---|---|---|---|---|---|---|
Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) | Mode | Frequency (GHz) |
TE101 | 4.46 | TE121 | 19.50 | TE129 | 22.18 | TM326 | 24.03 |
TE102 | 4.91 | TM121 | 19.50 | TM129 | 22.18 | TE327 | 24.41 |
TE103 | 5.58 | TE122 | 19.61 | TE505 | 22.32 | TM327 | 24.41 |
TE104 | 6.39 | TM122 | 19.61 | TE506 | 22.66 | TE5010 | 24.55 |
TE105 | 7.31 | TE123 | 19.79 | TE1210 | 22.77 | TE328 | 24.83 |
TE106 | 8.29 | TM123 | 19.79 | TM1210 | 22.77 | TM328 | 24.83 |
TE107 | 9.32 | TE124 | 20.03 | TE321 | 22.99 | TE329 | 25.30 |
TE108 | 10.38 | TM124 | 20.03 | TM321 | 22.99 | TM329 | 25.30 |
TE109 | 11.47 | TE125 | 20.35 | TE507 | 23.05 | TE3210 | 25.82 |
TE1010 | 12.57 | TM125 | 20.35 | TE322 | 23.08 | TM3210 | 25.82 |
TE301 | 12.97 | TE126 | 20.72 | TM322 | 23.08 | TE521 | 28.72 |
TE302 | 13.13 | TM126 | 20.72 | TE323 | 23.23 | TE522 | 28.80 |
TE303 | 13.39 | TE127 | 21.15 | TM323 | 23.23 | TE523 | 28.92 |
TE304 | 13.75 | TM127 | 21.15 | TE324 | 23.44 | TE524 | 29.09 |
TE305 | 14.20 | TE501 | 21.55 | TM324 | 23.44 | TE525 | 29.30 |
TE306 | 14.73 | TE128 | 21.64 | TE508 | 23.50 | TE526 | 29.56 |
TE307 | 15.33 | TM128 | 21.64 | TE325 | 23.71 | TE527 | 29.87 |
TE308 | 16.00 | TE502 | 21.65 | TM325 | 23.71 | TE528 | 30.21 |
TE309 | 16.73 | TE503 | 21.81 | TE509 | 24.00 | TE529 | 30.60 |
TE3010 | 17.50 | TE504 | 22.03 | TE326 | 24.03 | TE5210 | 31.03 |
Simulated Permittivity | Simulated Loss Tangent | Calculated Permittivity | Calculated Loss Tangent | Permittivity Error (%) | Loss Tangent Error (%) |
---|---|---|---|---|---|
1.5 | 0.1 | 1.4964 | 0.1142 | 0.24 | 14.2 |
0.05 | 1.4888 | 0.0538 | 0.75 | 7.6 | |
0.01 | 1.492 | 0.0106 | 0.53 | 6 | |
0.005 | 1.4929 | 0.0051 | 0.47 | 2 | |
0.001 | 1.4945 | 0.0011 | 0.37 | 10 | |
2.2 | 0.1 | 2.195 | 0.1144 | 0.23 | 14.4 |
0.05 | 2.1944 | 0.0515 | 0.25 | 3 | |
0.01 | 2.195 | 0.0101 | 0.23 | 1 | |
0.005 | 2.1944 | 0.0061 | 0.25 | 22 | |
0.001 | 2.1966 | 0.0011 | 0.15 | 10 | |
2.9 | 0.1 | 2.8888 | 0.1232 | 0.39 | 23.2 |
0.05 | 2.9084 | 0.0589 | 0.29 | 17.8 | |
0.01 | 2.8982 | 0.0111 | 0.06 | 11 | |
0.005 | 2.9035 | 0.0057 | 0.12 | 14 | |
0.001 | 2.9027 | 0.0011 | 0.09 | 10 |
Simulated Permittivity | Simulated Loss Tangent | Calculated Permittivity | Calculated Loss Tangent | Permittivity Error (%) | Loss Tangent Error (%) |
---|---|---|---|---|---|
1.5 | 0.1 | 1.4768 | 0.1216 | 1.55 | 21.6 |
0.05 | 1.4884 | 0.0549 | 0.77 | 9.8 | |
0.01 | 1.4942 | 0.0113 | 0.39 | 13 | |
0.005 | 1.4926 | 0.0054 | 0.49 | 8 | |
0.001 | 1.4926 | 0.0008 | 0.49 | 20 | |
2.2 | 0.1 | 2.1794 | 0.1110 | 0.94 | 11 |
0.05 | 2.1806 | 0.0544 | 0.88 | 8.8 | |
0.01 | 2.1832 | 0.0117 | 0.76 | 17 | |
0.005 | 2.1832 | 0.0048 | 0.76 | 4 | |
0.001 | 2.2105 | 0.00103 | 0.48 | 3 | |
2.9 | 0.1 | 2.8546 | 0.1129 | 1.57 | 12.9 |
0.05 | 2.8482 | 0.0535 | 1.79 | 7 | |
0.01 | 2.8514 | 0.0126 | 1.68 | 26 | |
0.005 | 2.8482 | 0.0054 | 1.79 | 8 | |
0.001 | 2.8449 | 0.0009 | 1.90 | 10 |
Material | Thickness (m) | WR650 (Length = 105 mm) TE101 (fc = 1.65 GHz) | WR137 (Length = 127 mm) TE103 = (fc = 5.575 GHz) | ||||
---|---|---|---|---|---|---|---|
Permittivity | Loss Tangent | Noise (K) | Permittivity | Loss Tangent | Noise (K) | ||
PTFE Fabric * | 0.00015 | 2.9 | 0.0009 | 0.0024 | 2.87 | 0.0044 | 0.0392 |
Dyneema * | 0.0001 | 2.6 | 0.0019 | 0.0032 | 2.58 | 0.0135 | 0.0760 |
N-Shell | 0.0003 | 1.4 | 0.0064 | 0.0236 | 1.4 | 0.0094 | 0.1169 |
3-LL | 0.0003 | 2.09 | 0.0225 | 0.1012 | 1.98 | 0.0244 | 0.3608 |
2-LL | 0.0002 | 1.87 | 0.0208 | 0.0590 | 1.85 | 0.0267 | 0.2545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahms, T.; Hayman, D.B.; Mohamadzade, B.; Smith, S.L. Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom 2024, 5, 706-722. https://doi.org/10.3390/telecom5030035
Dahms T, Hayman DB, Mohamadzade B, Smith SL. Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom. 2024; 5(3):706-722. https://doi.org/10.3390/telecom5030035
Chicago/Turabian StyleDahms, Tayla, Douglas B. Hayman, Bahare Mohamadzade, and Stephanie L. Smith. 2024. "Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities" Telecom 5, no. 3: 706-722. https://doi.org/10.3390/telecom5030035
APA StyleDahms, T., Hayman, D. B., Mohamadzade, B., & Smith, S. L. (2024). Measurement of Dielectric Properties of Thin Materials for Radomes Using Waveguide Cavities. Telecom, 5(3), 706-722. https://doi.org/10.3390/telecom5030035