Smart Detection System of Safety Hazards in Industry 5.0
Abstract
:1. Introduction
2. Industry 5.0: Building a Human-Centric Industry
2.1. Evolution of Industrial Revolutions and Industry 5.0
2.2. Employee Safety in Industry 5.0 Manufacturing via Safety Management
3. Related Work and Background
3.1. Synthetic Datasets
3.2. Object Detection Algorithms
4. Flexible and Adjustable Detection System
- Synthetic Dataset Creation: The initial stage contains the processes to generate a dataset of synthetic images via a virtual environment;
- AI Model Creation: The second stage focuses on the definition of the AI model architecture for object detection tasks as well as the training of the model. Additionally, the evaluation of model performance is performed based on appropriate metrics to gain insights into how well the model identifies objects.
4.1. Synthetic Dataset Creation
4.2. AI Model Creation
4.2.1. AI Model Definition and Training
4.2.2. AI Model Evaluation
5. Experiments and Results
5.1. Real-World and Synthetic Datasets Description
5.2. AI Model Training on Real-World and Synthetic Datasets
5.3. Experimenting with Synthetic and Limited Amount of Real-World Data
5.4. Synthetic Dataset of Four PPE Classes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence | R-CNN | Region-based Convolutional Neural Network |
AP | Average Precision | SGD | Stochastic Gradient Descent |
CHV | Color Helmet and Vest | SSD | Single Shot Multibox Detector |
FN | False Negative | SYN_HV | Synthetic Helmet and Vest |
FP | False Positive | TP | True Positive |
IoU | Intersection over Union | VE | Virtual Environment |
mAP | Mean Average Precision | VNE | Virtual Network Embedding |
ML | Machine Learning | VR | Virtual Reality |
NIOSH | National Institute for Occupational Safety and Health | YOLO | You Only Look Once |
PPE | Personal Protective Equipment |
References
- Vretos, N.; Daras, P.; Asteriadis, S.; Hortal, E.; Ghaleb, E.; Spyrou, E.; Leligou, H.C.; Karkazis, P.; Trakadas, P.; Assimakopoulos, K. Exploiting sensing devices availability in AR/VR deployments to foster engagement. Virtual Real. 2019, 23, 399–410. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Koch, V.; Kuge, S.; Geissbauer, R.; Schrauf, S. Industry 4.0: Opportunities and challenges of the industrial internet. Strategy PwC 2014, 13, 5–50. [Google Scholar]
- Waibel, M.W.; Steenkamp, L.P.; Moloko, N.; Oosthuizen, G.A. Investigating the Effects of Smart Production Systems on Sustainability Elements. Procedia Manuf. 2017, 8, 731–737. [Google Scholar] [CrossRef]
- Kong, X.T.R.; Luo, H.; Huang, G.Q.; Yang, X. Industrial wearable system: The human-centric empowering technology in Industry 4.0. J. Intell. Manuf. 2019, 30, 2853–2869. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Research and Innovation. In Industry 5.0: Towards a Sustainable, Human Centric and Resilient European Industry; Publications Office: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2777/308407 (accessed on 10 August 2023).
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar] [CrossRef]
- George, A.S.; George, A.H. Revolutionizing Manufacturing: Exploring the Promises and Challenges of Industry 5.0. Partn. Univers. Int. Innov. J. 2023, 1, 22–38. [Google Scholar] [CrossRef]
- Østergaard, E.H. The “Human Touch” Revolution Is Now under Way. Available online: https://industrialmachinerydigest.com/industrial-news/white-papers/welcome-industry-5-0-human-touch-revolution-now-way/ (accessed on 20 October 2023).
- Simões, A.C.; Pinto, A.; Santos, J.; Pinheiro, S.; Romero, D. Designing human-robot collaboration (HRC) workspaces in industrial settings: A systematic literature review. J. Manuf. Syst. 2022, 62, 28–43. [Google Scholar] [CrossRef]
- Eurostat—Statistics Explained Accidents at Work—Statistics by Economic Activity. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Accidents_at_work_-_statistics_by_economic_activity#Developments_over_time (accessed on 20 October 2023).
- Karanikas, N.; Melis, D.J.; Kourousis, K.I. The Balance between Safety and Productivity and its Relationship with Human Factors and Safety Awareness and Communication in Aircraft Manufacturing. Saf. Health Work 2018, 9, 257–264. [Google Scholar] [CrossRef]
- Shikdar, A.A.; Sawaqed, N.M. Worker productivity, and occupational health and safety issues in selected industries. Comput. Ind. Eng. 2003, 45, 563–572. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, H.; Chand, S.; Xia, W.; Liu, Z.; Xu, X.; Wang, L.; Qin, Z.; Bao, J. Outlook on human-centric manufacturing towards Industry 5.0. J. Manuf. Syst. 2022, 62, 612–627. [Google Scholar] [CrossRef]
- Wang, H.; Lv, L.; Li, X.; Li, H.; Leng, J.; Zhang, Y.; Thomson, V.; Liu, G.; Wen, X.; Sun, C.; et al. A safety management approach for Industry 5.0’s human-centered manufacturing based on digital twin. J. Manuf. Syst. 2023, 66, 1–12. [Google Scholar] [CrossRef]
- Karkazis, P.A.; Railis, K.; Prekas, S.; Trakadas, P.; Leligou, H.C. Intelligent Network Service Optimization in the Context of 5G/NFV. Signals 2022, 3, 587–610. [Google Scholar] [CrossRef]
- Prekas, S.; Karkazis, P.; Nikolakakis, V.; Trakadas, P. Comprehensive Comparison of VNE Solutions Based on Different Coordination Approaches. Telecom 2021, 2, 390–412. [Google Scholar] [CrossRef]
- Raghunathan, T.E. Synthetic Data. Annu. Rev. Stat. Appl. 2021, 8, 129–140. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 2021, 5, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, F.-J.; Triviño-Tarradas, P.; Cima-Rodríguez, C.; Meroño-de-Larriva, J.-E.; García-Ferrer, A.; Mesas-Carrascosa, F.-J. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires. Sensors 2021, 21, 3694. [Google Scholar] [CrossRef]
- Öztürk, A.E.; Erçelebi, E. Real UAV-Bird Image Classification Using CNN with a Synthetic Dataset. Appl. Sci. 2021, 11, 3863. [Google Scholar] [CrossRef]
- Tremblay, J.; To, T.; Birchfield, S. Falling Things: A Synthetic Dataset for 3D Object Detection and Pose Estimation. arXiv 2018, arXiv:1804.06534. [Google Scholar] [CrossRef]
- Borkman, S.; Crespi, A.; Dhakad, S.; Ganguly, S.; Hogins, J.; Jhang, Y.-C.; Kamalzadeh, M.; Li, B.; Leal, S.; Parisi, P.; et al. Unity Perception: Generate Synthetic Data for Computer Vision. arXiv 2021, arXiv:2107.04259. [Google Scholar] [CrossRef]
- He, B.; Li, X.; Huang, B.; Gu, E.; Guo, W.; Wu, L. UnityShip: A Large-Scale Synthetic Dataset for Ship Recognition in Aerial Images. Remote Sens. 2021, 13, 4999. [Google Scholar] [CrossRef]
- Wang, K.; Shi, F.; Wang, W.; Nan, Y.; Lian, S. Synthetic Data Generation and Adaption for Object Detection in Smart Vending Machines. arXiv 2019. [Google Scholar] [CrossRef]
- Rampini, L.; Re Cecconi, F. Synthetic images generation for semantic understanding in facility management. Constr. Innov. 2023. [Google Scholar] [CrossRef]
- Akar, C.A.; Tekli, J.; Jess, D.; Khoury, M.; Kamradt, M.; Guthe, M. Synthetic Object Recognition Dataset for Industries. In Proceedings of the 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Natal, Brazil, 24–27 October 2022; IEEE: New York, NY, USA, 2022; pp. 150–155. [Google Scholar]
- Saleh, F.S.; Aliakbarian, M.S.; Salzmann, M.; Petersson, L.; Alvarez, J.M. Effective Use of Synthetic Data for Urban Scene Semantic Segmentation. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11206, pp. 86–103. ISBN 978-3-030-01215-1. [Google Scholar]
- Sutjaritvorakul, T.; Vierling, A.; Berns, K. Data-Driven Worker Detection from Load-View Crane Camera. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan, 26–30 October 2020. [Google Scholar]
- Neuhausen, M.; Herbers, P.; König, M. Using Synthetic Data to Improve and Evaluate the Tracking Performance of Construction Workers on Site. Appl. Sci. 2020, 10, 4948. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S. Construction Site Safety Management: A Computer Vision and Deep Learning Approach. Sensors 2023, 23, 944. [Google Scholar] [CrossRef]
- Koo, S.; Park, C.; Lee, S.; Seo, J.; Eo, S.; Moon, H.; Lim, H. Uncovering the Risks and Drawbacks Associated with the Use of Synthetic Data for Grammatical Error Correction. IEEE Access 2023, 11, 95747–95756. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; IEEE: New York, NY, USA, 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9905, pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 779–788. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection 2020. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Ultralytics YOLOv5: A State-of-the-Art Real-Time Object Detection Systm 2021. Available online: https://docs.ultralytics.com (accessed on 20 October 2023).
- Shen, J.; Xiong, X.; Li, Y.; He, W.; Li, P.; Zheng, X. Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 180–196. [Google Scholar] [CrossRef]
- Benyang, D.; Xiaochun, L.; Miao, Y. Safety helmet detection method based on YOLO v4. In Proceedings of the 2020 16th International Conference on Computational Intelligence and Security (CIS), Guangxi, China, 27–30 November 2020; IEEE: New York, NY, USA, 2016; pp. 155–158. [Google Scholar]
- Fu, D.; Gao, L.; Hu, T.; Wang, S.; Liu, W. Research on Safety Helmet Detection Algorithm of Power Workers Based on Improved YOLOv5. J. Phys.Conf. Ser. 2022, 2171, 012006. [Google Scholar] [CrossRef]
- Nath, N.D.; Behzadan, A.H.; Paal, S.G. Deep learning for site safety: Real-time detection of personal protective equipment. Autom. Constr. 2020, 112, 103085. [Google Scholar] [CrossRef]
- Ahmed Al Daghan, A.T.; Vineeta; Kesh, S.; Manek, A.S. A Deep Learning Model for Detecting PPE to Minimize Risk at Construction Sites. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Protik, A.A.; Rafi, A.H.; Siddique, S. Real-time Personal Protective Equipment (PPE) Detection Using YOLOv4 and TensorFlow. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Karlsson, J.; Strand, F.; Bigun, J.; Alonso-Fernandez, F.; Hernandez-Diaz, K.; Nilsson, F. Visual Detection of Personal Protective Equipment and Safety Gear on Industry Workers. In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods; SCITEPRESS—Science and Technology Publications: Lisbon, Portugal, 2023; pp. 395–402. [Google Scholar]
- Gallo, G.; Rienzo, F.D.; Garzelli, F.; Ducange, P.; Vallati, C. A Smart System for Personal Protective Equipment Detection in Industrial Environments Based on Deep Learning at the Edge. IEEE Access 2022, 10, 110862–110878. [Google Scholar] [CrossRef]
- GIMP—GNU Image Manipulation Program. Available online: https://www.gimp.org/ (accessed on 20 October 2023).
- Blender. Available online: https://www.blender.org/ (accessed on 20 October 2023).
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, NY, USA, 2019; pp. 658–666. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. ISBN 978-3-319-10601-4. [Google Scholar]
- Wang, Z.; Wu, Y.; Yang, L.; Thirunavukarasu, A.; Evison, C.; Zhao, Y. Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches. Sensors 2021, 21, 3478. [Google Scholar] [CrossRef]
Research Paper | Domain | Task |
---|---|---|
Boyong He et al. [24] | Maritime surveillance | Ship recognition in aerial images |
Kai Wang et al. [25] | Robot scene understanding | Object detection in vending machine |
Tremblay et al. [22] | Objects detection for the household environment | |
Rampini and Re Cecconi [26] | Facilities management | Facility management component object detection |
Akar et al. [27] | Industry | Dataset for object detection |
Saleh et al. [28] | Urban scene understanding | Semantic Segmentation |
Sutjaritvorakul et al. [29] | Construction site safety management | Worker detection |
Neuhausen et al. [30] | Worker detection and tracking | |
Lee and Lee [31] | Worker fall detection |
Algorithm ID | Functionality |
---|---|
GridPicker/GridEnabler | Picks/Enables random layout to be displayed |
SeatPicker | Picks and enables random human postures |
ForegroundObjectRandomizer | Randomly changes rotation and scale parameters of human 3D model |
WearablesRandomizer | Picks and enables random 3D PPE on each human 3D model |
HueRandomizer | Randomly changes the hue of the 3D object |
CustomTextureRandomizer | Randomly changes the texture of the 3D object |
Trained Dataset | Precision | Recall | AP Vest | AP Helmet | mAP |
---|---|---|---|---|---|
CHV | 89.6% | 84.8% | 86.4% | 91.4% | 88.9% |
SYN_HV | 77.5% | 67.8% | 67.6% | 75.5% | 71.6% |
Experiment ID | Real Images Number | Synthetic Images Number |
---|---|---|
E1_50_0 | 50 | 0 |
E2_50_50 | 50 | 50 |
E3_50_100 | 50 | 100 |
E4_50_150 | 50 | 150 |
Ε5_50_300 | 50 | 300 |
E6_50_600 | 50 | 600 |
E7_50_1200 | 50 | 1200 |
E1_50_0 | E2_50_50 | E3_50_100 | E4_50_150 | E5_50_300 | E6_50_600 | E7_50_1200 | |
---|---|---|---|---|---|---|---|
mAP | 14.3% | 16.3% | 17.3% | 71.2% | 79.5% | 84.1% | 81.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourou, S.; Maniatis, A.; Kontopoulos, D.; Karkazis, P.A. Smart Detection System of Safety Hazards in Industry 5.0. Telecom 2024, 5, 1-20. https://doi.org/10.3390/telecom5010001
Bourou S, Maniatis A, Kontopoulos D, Karkazis PA. Smart Detection System of Safety Hazards in Industry 5.0. Telecom. 2024; 5(1):1-20. https://doi.org/10.3390/telecom5010001
Chicago/Turabian StyleBourou, Stavroula, Apostolos Maniatis, Dimitris Kontopoulos, and Panagiotis A. Karkazis. 2024. "Smart Detection System of Safety Hazards in Industry 5.0" Telecom 5, no. 1: 1-20. https://doi.org/10.3390/telecom5010001
APA StyleBourou, S., Maniatis, A., Kontopoulos, D., & Karkazis, P. A. (2024). Smart Detection System of Safety Hazards in Industry 5.0. Telecom, 5(1), 1-20. https://doi.org/10.3390/telecom5010001