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Abstract: Safety management is a priority to guarantee human-centered manufacturing processes
in the context of Industry 5.0, which aims to realize a safe human–machine environment based on
knowledge-driven approaches. The traditional approaches for safety management in the industrial
environment include staff training, regular inspections, warning signs, etc. Despite the fact that
proactive measures and procedures have exceptional importance in the prevention of safety hazards,
human–machine–environment coupling requires more sophisticated approaches able to provide
automated, reliable, real-time, cost-effective, and adaptive hazard identification in complex manufac-
turing processes. In this context, the use of virtual reality (VR) can be exploited not only as a means
of human training but also as part of the methodology to generate synthetic datasets for training AI
models. In this paper, we propose a flexible and adjustable detection system that aims to enhance
safety management in Industry 5.0 manufacturing through real-time monitoring and identification of
hazards. The first stage of the system contains the synthetic data generation methodology, aiming to
create a synthetic dataset via VR, while the second one concerns the training of AI object detectors
for real-time inference. The methodology is evaluated by comparing the performance of models
trained on both real-world data from a publicly available dataset and our generated synthetic data.
Additionally, through a series of experiments, the optimal ratio of synthetic and real-world images is
determined for training the object detector. It has been observed that even with a small amount of
real-world data, training a robust AI model is achievable. Finally, we use the proposed methodology
to generate a synthetic dataset of four classes as well as to train an AI algorithm for real-time detection.

Keywords: Industry 5.0; employee safety; intelligent detection system; synthetic dataset; virtual
reality; AI object detector; PPE detection

1. Introduction

Over the years, numerous industrial revolutions took place, transforming the indus-
trial scene. These evolutionary phases introduce the progressive integration of novel
technologies into manufacturing procedures, aiming to enhance efficiency, productivity,
and economic growth. Nowadays, Industry 5.0 is emerging, placing humans at the center
of production. Specifically, the human-centered Industry 5.0 emphasizes the integration
of smart technologies, automation, and data exchange in manufacturing. Beyond the
human-centric focus of the Fifth Revolution, it also induces increased resilience and an
improved emphasis on sustainability.

The human-centric Industry 5.0 places a high priority on employee safety in manu-
facturing, emphasizing a knowledge-driven approach to human–machine–environmental
safety. Intelligent safety management that goes beyond conventional measures becomes
necessary to deal with complex human–machine–environment interactions. Moreover,
based on the capabilities and opportunities of Industry 5.0, it becomes pivotal to design
and develop safety management strategies that not only address the unique challenges
of each manufacturing setting but are also robust enough to be adapted across varying
operational landscapes.
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By leveraging advanced technologies, an efficient, flexible, and adaptable monitoring
system can be established. Specifically, object detection algorithms can be integrated into
video surveillance systems to analyze the footage in real-time and identify potential hazards
within an industrial environment. However, the accuracy of such a complex process, based
on AI methods, is strongly dependent on datasets.

The acquisition of real data poses significant challenges both in terms of cost and
safety, specifically in cases where human participation is required. Especially in hazardous
environments, such as manufacturing, obtaining real data involves significant risks, mainly
concerning the safety of personnel involved in data collection. Those challenges can be
addressed by utilizing game development platforms, such as Unity, to generate high-quality
synthetic data via virtual reality (VR). This not only diminishes the time spent on data
collection and annotation but also substantially reduces the requisite human effort and
cost. Moreover, synthetic datasets can be created to accommodate the specifics of various
industrial scenarios. VR acts as an immersive simulation tool, offering safe and controlled
environments that mimic real-world scenarios. VR is utilized in various fields, such as
education, healthcare, engineering, etc., with potential enhancements through sensors
available in VR systems [1].

One of the fundamental methods to protect workers is to monitor and control their
exposure to hazards, as well as to detect and identify potential risks in the workplace.
According to the National Institute for Occupational Safety and Health (NIOSH) in the
U.S., the sequence of control measures begins with the utilization of personal protective
equipment (PPE), which refers to specialized gear or clothing intended to protect individ-
uals from potential hazards in the workplace. PPE is used to minimize the risk of injury
or exposure to various physical or other types of hazards. Some examples of PPE include
safety helmets, vests and other protective clothing, safety goggles, etc.

In this research paper, we delve into the importance of a flexible and adjustable
detection system of safety hazards for Industry 5.0. Initially, we analyze the five industrial
revolutions. More focus is given to Industries 4.0 and 5.0, presenting the benefits of them as
well as the needs that pushed the advent of the fifth revolution. Additionally, considering
the human-centric nature of Industry 5.0, we examine the necessity of flexible and adaptable
safety management methods in manufacturing, leveraging advanced technologies, and
highly respecting human–machine–environment interactions.

Moreover, we propose a flexible and adjustable detection system that can be exploited
by factory safety management to detect hazards in real-time. Considering the importance
of PPE utilization regarding personnel safety, we focus on the detection of that equipment
to enhance industrial safety. However, the proposed system is independent of the use case
and can be applied to various scenarios and environments. The first stage of our system
is the synthetic data generation methodology, which involves the creation of large-scale
annotated datasets using 3D software, such as Blender, and a game development platform,
like Unity. The various steps to achieve this are detailed, and all the mentioned information
can be adjusted. The generated data can be modified and restructured to suit evolving
requirements or to simulate new environments, enhancing the adaptability of the proposed
methodology. The second stage concerns the training and evaluation of a training model
that can be deployed on video surveillance systems to identify the target hazards in real-
time. We evaluate the methodology in a practical scenario in which the performance of
AI object detection models trained both on real-world data from the CHV dataset and
on our synthetic data is compared. Additionally, we conduct a series of experiments to
determine the optimal ratio of synthetic and real data for constituting the training set of
object detectors, aiming to achieve the highest possible performance with the minimum
number of real-world samples. Finally, by utilizing the proposed methodology, we create a
synthetic dataset of four PPE classes, namely vest, helmet, glove, and goggle. We train an
object detector on this dataset, and we employ real-world images for inference, managing
to achieve real-time detections, proving that the detection system can be exploited for
real-time applications. The detection system is illustrated in Figure 1. To the best of
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our knowledge, this is the first study to apply synthetic dataset generation methodology,
utilizing a game development platform for PPE detection in manufacturing and offering
insights about the capabilities and limitations of exploiting synthetic data for real-world
applications in this domain.
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The remainder of the paper is organized as follows: Section 2 presents the different
industrial evolutions, focusing on Industry 5.0 and its requirements for flexible and adapt-
able safety management methods. Section 3 provides the related work and background
for synthetic dataset generation methods as well as AI/ML object detection algorithms.
Section 4 introduces our proposed smart detection system, including the generation of
annotated data and the creation of an AI object detection model, while Section 5 presents
the experiments and the results. Finally, the paper concludes in Section 6.

2. Industry 5.0: Building a Human-Centric Industry

The evolution of industrial practices over the past centuries has been marked by
successive revolutions, each introducing a new era of production and efficiency. Industry
5.0 is the newest one, aiming to place humans at the heart of production processes. This
section presents the various industrial revolutions, focusing on Industry 5.0. Moreover, it
describes the need for flexible and adaptable safety management methods for Industry 5.0.

2.1. Evolution of Industrial Revolutions and Industry 5.0

The first industrial revolution, Industry 1.0, rooted in the late 18th century, marked the
transition from manual production methods to mechanized ones through the utilization of
water and steam power. This shift brought about an increase in production and was primar-
ily driven by the need for greater output and advancements in engineering. Progressing to
Industry 2.0 in the early 20th century, the focus transitioned to mass production and as-
sembly line techniques powered mainly by electricity. This change was necessitated by the
growing demands of the growing global population and was characterized by the assembly
lines of the automotive industry. Industry 3.0 came about in the late 20th century and was
focused on the integration of computers and automation into the production process. The
motivation for this transition was the rapid developments in electronic technology and the
need for more precision, speed, and efficiency in production.

Industry 4.0 began in 2011 with an initiative in the high-tech strategy of the German
government [2]. It describes the transformation of traditional industries through the in-
tegration of digital technologies, automation, and AI. It refers to the digitization of the
manufacturing sector, which is driven by the rise of data, connectivity, analytics, and ad-
vancements in robotics. The integration of digital technologies into manufacturing reduces
setup and processing times and labor and material costs, resulting in higher productivity in
production [3]. Furthermore, this integration mitigates energy consumption and minimizes
waste generation [4]. The capabilities of Industry 4.0 solutions allow the collection, analysis,
and interpretation of a vast amount of data in real-time, empowering the rapid acquisition
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of actionable insights and enhancing decision-making accuracy. However, from a socially
sustainable perspective, the technological changes associated with Industry 4.0 should
carefully recognize the central importance of human participation in the loop [5].

The idea of Industry 5.0 appears as an extension of Industry 4.0, originating from the
observation that Industry 4.0 places less emphasis on the principles of social fairness and
sustainability but more on digitalization and AI-driven technologies. Consequently, the
concept of Industry 5.0 was introduced in 2017, emphasizing the importance of research and
innovation to support the industry in its long-term service to humanity and adding humans
into the equation while respecting planetary boundaries [6] and social aspects. Specifically,
the Fifth Industrial Revolution emphasizes the necessity of placing humans at the heart of
production processes, involving them in every step. This means that smart machines and
robots are working together with humans to improve the efficiency of industrial production,
considering the environmental impact. Additionally, Industry 5.0 identifies the ability of
industry to fulfill social objectives by taking into account the limitations of our planet’s
resources as well as placing importance on employee health [7].

Industry 5.0 can yield numerous advantages for the manufacturing sector. Firstly,
by combining advanced technologies with human intelligence, manufacturers can attain
significant improvements in productivity and efficiency, resulting in enhanced competition
while reducing costs. The enhanced collaboration between humans and machines holds
the potential to establish manufacturing processes where machines handle routine tasks
while humans undertake more complex tasks demanding advanced skills like innovation,
decision-making, and problem-solving. Therefore, the accuracy and speed of manufactur-
ing activities can be improved [8]. Industry 5.0 can also improve efficiency via collaborative
robots, known as cobots, which can safely work together with human employees, offering
assistance in activities like assembling, packaging, and ensuring quality [9,10]. Moreover,
Industry 5.0 focuses on the creation of a safe and secure working environment to prioritize
physical and mental health as well as the wellbeing of workers within the production
process while protecting fundamental rights of workers, such as dignity and privacy.

2.2. Employee Safety in Industry 5.0 Manufacturing via Safety Management

In human-centered Industry 5.0, ensuring employee safety in manufacturing is of high
importance. The manufacturing sector has historically been characterized by elevated injury
rates stemming from the complexities and risks associated with its operations. Specifically,
in 2020, the EU reported that manufacturing had the highest number of non-fatal accidents
(18.2% of the total) and was the sector with the second-highest number of fatal accidents
(14.6% of the total) [11]. By establishing protective measures, employees can concentrate
on their tasks rather than being preoccupied with potential risks and hazards in their
environment. Studies indicate that employees who perceive their workplace as secure and
safe tend to exhibit enhanced performance compared to those who feel insecure [12,13].

Since Industry 5.0 places humans at the center of the new-generation manufacturing
system, emphasis should be given to human–machine–environmental safety based on
knowledge-driven approaches. One fundamental component to ensure human-centered
manufacturing towards Industry 5.0 is the establishment of intelligent factory safety man-
agement [14]. Conventional approaches to safety management involve employee training,
routine inspections, the utilization of warning signs, etc. Those preventive measures hold
significant importance for proactively mitigating safety hazards and risks. However, those
traditional measures ignore the complexity of human–machine–environment coupling,
which requires more sophisticated approaches able to provide automated, reliable, real-
time, and cost-effective safety management methods.

In the context of Industry 5.0, advanced technologies can be utilized to create intelligent
factory safety management. This can be achieved by establishing an efficient monitoring
mechanism to identify potential hazards in manufacturing. The system could comprise
cameras strategically positioned in the space to capture real-time footage, which is then
processed by object detection algorithms trained specifically on application-related data.
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Real-time detection can trigger alerts to relevant personnel when non-compliance events
occur. The robustness and efficiency of the monitoring system heavily depend on the
available data for object detection training.

However, the complexity of the interaction between humans, machines, and the
environment imposes challenges in formulating robust safety management strategies. A
significant challenge lies in the adaptability of these safety methods; while one approach
can be suitable for a particular case, it might not be relevant or applicable to another [15].
Therefore, it is crucial to develop safety management approaches that can be adaptable for
exploitation in various manufacturing environments. This can be achieved by generating
data tailored to specific applications and scenarios.

Flexible and adaptable safety management for Industry 5.0 manufacturing can be
designed by employing our proposed system. Initially, high-quality synthetic datasets can
be generated via virtual environments (VEs) by exploiting the proposed synthetic data
generation methodology. These data are artificially produced instead of being acquired from
real-world events, which offers numerous notable advantages, including the possibility
for adaptability across diverse environments. The methodology of this paper provides the
steps to create synthetic datasets that can simulate a wide range of conditions, variables,
scenarios, and settings, which becomes particularly valuable in environments where a
large amount of real-world data acquisition is challenging or costly. Afterward, AI object
detectors can be trained on synthetic datasets and utilized for real-time monitoring based
on data streams from cameras. Additionally, innovative architecture optimizes network
and service performance [16]. For the networking of the monitoring system, the capabilities
of Virtual Network Embedding (VNE) can also be explored [17].

3. Related Work and Background

In the rapidly evolving landscape of AI/ML applications, numerous studies have
explored the possibilities and opportunities of creating and utilizing synthetic datasets for
a range of ML tasks, especially object detection. Over the years, advancements in synthetic
dataset generation have led to the development of more powerful ML models capable of
accurately processing complex tasks. This section contains foundational knowledge in the
field of synthetic dataset generation as well as in ML object detection.

3.1. Synthetic Datasets

The acquisition of comprehensive and high-quality datasets is a cornerstone of modern
research and innovation across scientific and industrial domains. In several fields, such
as computer graphics, datasets have stopped containing exclusively real data for over
a few decades, with the appearance of synthetic datasets for graphics rendering and
animation purposes [18]. The term synthetic dataset refers to a structured collection of data
generated artificially through computational methods, mathematical models, or simulations
to simulate real-world scenarios or phenomena. These datasets are intentionally created to
mimic the characteristics and statistical properties of real data, but they are not derived from
measurements. Their creation involves the application of algorithms, statistical techniques,
and domain knowledge to replicate the complexity and diversity of authentic datasets,
making them essential in situations where obtaining real data is challenging.

On the contrary, traditional data collection approaches often impose substantial finan-
cial burdens, technical complexities, and time constraints. In sectors like Industry 5.0, where
manufacturing obstacles multiply, data gathering can pose risks to human safety and the
integrity of industrial processes. In scientific fields such as disease diagnosis, real patient
data address privacy and ethical concerns [19], and in disaster detection systems, real data
may not contain enough examples of rare and extreme conditions [20]. Synthetic data gen-
eration offers a transformative solution that transcends these challenges, revolutionizing
dataset utilization by providing a safe, scalable, and cost-efficient means of obtaining data
that aligns with the requirements of modern research and industrial applications.
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Synthetic data play a vital role in the development of AI models, especially when the
real-time data are either insufficient or their acquisition is an expensive and risky proce-
dure. This kind of dataset enables robust training, validation, and testing of AI models in
various scenarios. Moreover, synthetic datasets can be designed to address diverse AI tasks,
ensuring customized data availability for diverse applications. Specifically, researchers
have turned their focus on game development platforms such as Unity [21] and Unreal
Engine [22] for data provision by leveraging their capabilities for 3D modeling, simulation,
and rendering. These engines are supplied with tools for generating virtual environments,
objects, and characters, enabling the creation of highly realistic and controllable scenarios.
By manipulating the game engines’ parameters, researchers can simulate a wide range of
real-world conditions, including lighting, weather, terrain, and physics. This flexibility is
invaluable for generating diverse and complex datasets for tasks like autonomous vehicle
training, robotics, and computer vision. Incorporating the functionality for camera place-
ment and movement, capturing images and videos can happen from various viewpoints, a
factor crucial for training machine learning models to understand and navigate real-world
scenes, while the process of annotating, which is conventionally labor-intensive and time-
consuming, can be automated through utilization of available information about object’s
3D and 2D bounding boxes [23].

The use of synthetic datasets has seen a big surge in object detection. For instance,
Boyong He et al. [24] turned to Unity 3D to create a dataset for training algorithms to spot
ships in aerial images. This move cut down on the high costs and labor of obtaining and
annotating real aerial images. In a similar vein, Kai Wang et al. [25] tackled the challenge
of limited data for building smart vending machines by whipping up synthetic images
using Unity, boosting the dataset available for smart vending machine development. On
a different front, Jonathan Tremblay et al. [22] contributed to object detection by crafting
a synthetic dataset focused on household objects for the purpose of improving robotic
scene understanding algorithms. Notably, they built this synthetic dataset in a virtual
environment using the Unreal Engine platform.

Focusing on the domain of facilities management, the authors in [26] propose an
approach to enhance the performance of object detection algorithms. Specifically, this
approach involves generating synthetically labeled images by leveraging pre-existing 3D
building models and inserting them into a graphic engine. For the industrial case, the
work in [27] presents a dataset with 200 K synthetic images for object detection purposes.
The dataset is generated using a renderer, and the scenes are created in collaboration with
different 3D experts. In addition to object detection, synthetic data also finds application in
semantic segmentation. The paper in [28] demonstrates an approach that generates syn-
thetic data to effectively train semantic segmentation AI algorithms in urban environments.

Synthetic data can be exploited for construction site safety management. The work [29]
presents a data-driven worker detection approach that generates synthetic data from
the virtual environment. These samples are used to train object detection AI models to
detect workers in sites from load-view crane cameras. The task of detecting and tracking
construction workers is also tackled in [30]. The paper presents the process for creating
synthetic scenes with a 3D creation suite, while these data are used to train an object
detection algorithm. Moreover, the authors in [31] create a synthetic dataset that can be
utilized for worker fall detection based on a virtual environment. Table 1 summarizes the
above-mentioned research works.

Although a valuable tool, the usage of synthetic datasets comes with certain draw-
backs. One prominent limitation is the potential for a lack of fidelity to real-world data.
While synthetic data can be meticulously crafted to replicate real-world scenarios, they may
not fully capture the complexity, variability, and nuances of genuine environments [32]. As
a result, when applied to real-world settings with unexpected challenges and unmodeled
factors, models trained on synthetic datasets may struggle to generalize effectively. Further-
more, the accuracy of object annotations in synthetic datasets is heavily dependent on the
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quality of the modeling and annotation processes, while annotation errors or discrepancies
can impede model training and evaluation.

Table 1. Research works on synthetic data creation using virtual environments.

Research Paper Domain Task

Boyong He et al. [24] Maritime surveillance Ship recognition in aerial images
Kai Wang et al. [25] Robot scene understanding Object detection in vending machine
Tremblay et al. [22] Objects detection for the household environment

Rampini and Re Cecconi [26] Facilities management Facility management component object detection
Akar et al. [27] Industry Dataset for object detection
Saleh et al. [28] Urban scene understanding Semantic Segmentation

Sutjaritvorakul et al. [29]
Construction site safety management

Worker detection
Neuhausen et al. [30] Worker detection and tracking

Lee and Lee [31] Worker fall detection

3.2. Object Detection Algorithms

Object detection is a fundamental computer vision task aiming to identify and localize
instances of specific objects within images or video frames. This task demands both
classification, where the class of the object must be identified, and localization, where the
position of this object within the image must be determined. The rapid developments of
Deep Learning techniques, particularly convolutional neural networks (CNNs), which
hierarchically learn the relevant features from raw image data, have played a crucial role in
revolutionizing the way object detection is developed and performed.

Object detection algorithms can be divided into two main approaches, namely two-stage
and one-stage methods. Two-stage algorithms, such as R-CNN (region-based CNN) [33]
and its advanced variants like Fast R-CNN [34] and Faster R-CNN [35], first propose a
series of bounding boxes and then classify them. One-stage methods, like SSD (Single Shot
Multibox Detector) [36] and YOLO (You Only Look Once) [37], detect objects in a single
pass through the network. Two-stage methods are often more accurate but computationally
expensive, while one-stage algorithms are generally faster and, therefore, suitable for
real-time applications; however, they sacrifice some accuracy. In the case of real-world
applications, in which the inference time is important, YOLO is the preferable choice,
allowing faster processing without significant loss of accuracy. Throughout the years, YOLO
experienced a series of iterative enhancements, progressing from the initial YOLOv1 [37]
to a more sophisticated YOLOv4 [38] and YOLOv5 [39]. Each iteration has introduced
improvements in speed, accuracy, and functionality.

Object detection is widely used in various applications, including autonomous driving,
smart agriculture, healthcare, industrial automation, and safety. Specifically for industrial
safety, by employing object detection, workplace safety can be enhanced, preventing
accidents and ensuring regulatory compliance. In industrial environments, the capabilities
of object detection systems to instantly identify objects are valuable. By continuously
monitoring the surroundings, these systems can promptly detect potential hazards such as
moving machinery, falling objects, or the absence of PPE.

Numerous research studies have extensively explored Deep Learning object detection
algorithms to detect PPE in different environmental conditions. Several studies explicitly
focus on safety helmet detection in various hazardous environments. The study in [40]
presents considerable advantages for detecting safety helmet wear on construction sites
using convolutional neural networks for face detection and bounding box regression. How-
ever, this work does not consider variations in environmental conditions. The capabilities
of YOLOv4 and YOLOv5 are explored for accurate and real-time helmet detection in the
construction site [41] and the power industry [42], respectively. The results of those studies
indicate that they can meet the requirements of real-world scenarios, but the detection
accuracy should be further improved.
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Several studies focus on the exploitation of Machine Learning or Deep Learning
methods to detect more than one object of PPE. The authors in [43] present three DL models
based on YOLO architecture to identify if the workers are wearing hard hats and vests
based on the Pictor-v3 dataset, a self-obtained and annotated image dataset that is created
by crowd-sourcing and web-mining techniques. One of the main limitations of vision-
based detection methods is that they are prone to occlusion, poor illumination, and image
blurriness. The work in [44] introduces a system designed to inform supervisors when a
worker is not wearing a helmet or vest. Another relevant paper in this field is demonstrated
in [45], in which the authors develop a detector that detects in real time if people wear face
masks, face shields, and hand gloves. The detector is trained on a combination of both
captured and collected images from Google. In both [44,45] papers, YOLO v4 is used as an
architecture model with satisfactory results.

The work described in [46] presents a system that enhances workers’ safety by employ-
ing a camera that detects the utilization of PPE using the YOLO v4 algorithm. To achieve
this, the researchers collect data from public resources and manually annotate it. The
created dataset consists of five classes, namely hardhats, safety vests, safety gloves, safety
glasses, and hearing protection. The system provides good detection accuracy; however,
it shows poor performance in uncontrolled environments and in the detection of small
and occluded objects. One relevant paper in that field is [47], which proposes a system for
real-time detection of PPE, namely helmets, vests, and gloves, using deep neural networks
on video streams. The authors of this work also enhance public datasets with manually
annotated ones while they deploy the application on a low-cost embedded system located
near the camera and directly connected to it, adopting the edge computing paradigm.

4. Flexible and Adjustable Detection System

In this section, we introduce an innovative methodology designed for the generation
of a large-scale annotated dataset using a game development platform. Our proposed work-
flow offers a versatile approach to creating annotated data for object detection algorithms
without constraints related to object properties or specific fields of application. The result
of this generation process is a comprehensive set of RGB synthetic images accompanied by
corresponding text files containing the coordinates of bounding boxes outlining objects. The
synthetic dataset sets the foundation for training the AI model. Specifically, the proposed
detection system includes the methodology for the generation of synthetic datasets as well
as the creation of an AI model consisting of model training and evaluation. The workflow
comprises two main stages:

1. Synthetic Dataset Creation: The initial stage contains the processes to generate a
dataset of synthetic images via a virtual environment;

2. AI Model Creation: The second stage focuses on the definition of the AI model
architecture for object detection tasks as well as the training of the model. Additionally,
the evaluation of model performance is performed based on appropriate metrics to
gain insights into how well the model identifies objects.

4.1. Synthetic Dataset Creation

The proposed methodology has been designed to ensure both effectiveness and target-
oriented outcomes. It produces a rich and diverse dataset that can cover a wide range of
scenarios, making it a valuable asset for a variety of object detection applications. Figure 2
illustrates the proposed methodology.

The first step of the pipeline is the in-depth analysis and understanding of the applica-
tion characteristics. This step involves a comprehensive analysis of potential variations in
geometry, appearance, and utility of the 3D models. This analysis guides the definition of
all possible scenarios to be represented within the dataset and provides insights on how
parameters such as size, rotation, and hue should be manipulated to achieve this diversity.
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Subsequently, considering the application’s purpose, the dataset requirements, and
the insights extracted from the previous analysis, the 3D models that will be utilized for the
generation of synthetic datasets are identified and selected. For our case, 3D models that
represent the human body as well as personal protective equipment (PPE) are considered,
specifically including vests, helmets, gloves, and goggles. Then, leveraging GIMP 2.0 [48],
we are equipped to create a diverse pool of textures for each object, enhancing the dataset’s
robustness. Subsequently, we leverage Blender [49] to establish associations between
the object of interest and other objects closely linked to it in real-life scenarios, thereby
improving the overall lifelikeness of the dataset. Figure 3 shows various texture variations
in a 3D object, specifically for the vest (right) as well as the defined association between 3D
objects (left).
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Figure 3. (a) Different variations in vest texture; (b) associations between 3D objects in a Blender
environment.

After preprocessing the various 3D objects, they are integrated into the Unity 3D
gaming engine, where the actual dataset generation unfolds. The dataset generation is
performed using Unity Perception [23], which is a set of tools and packages provided by
Unity Technologies designed to aid in the creation of synthetic datasets for the development
of ML models. It streamlines the critical processes of generating and annotating large
amounts of data by simulating various scenarios. Utilizing this toolkit, the user can create
diverse and rich datasets by controlling the content of the scene, such as active lighting
sources, visible 3D models, and their properties. Moreover, users can design and implement
randomization algorithms tailored to their specific requirements. These algorithms serve
to depict the desired scenarios while introducing the necessary noise to enhance dataset
robustness. In our scenario, multiple custom algorithms are designed and implemented to
change the scene’s parameters and options during the generation process. Table 2 presents
all custom randomizer functionalities that are utilized for our case.
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Table 2. Custom randomization algorithms and their functionality.

Algorithm ID Functionality

GridPicker/GridEnabler Picks/Enables random layout to be displayed
SeatPicker Picks and enables random human postures

ForegroundObjectRandomizer Randomly changes rotation and scale parameters of human
3D model

WearablesRandomizer Picks and enables random 3D PPE on each human 3D model
HueRandomizer Randomly changes the hue of the 3D object
CustomTextureRandomizer Randomly changes the texture of the 3D object

To provide a realistic context, we chose to display the 3D objects as being worn
by human models, with each model assuming its own unique body posture. To ensure
diversity, we develop various custom randomization scripts inspired by the principles of
perception, enabling us to create eight distinct layouts, each featuring a portion of the final
samples. The layouts are grids of fixed positions where 3D models are being placed. In
every frame, a human model equipped with safety wearables is randomly selected and
placed in each corresponding position of the active layout. The selection of both the human
model and the equipment category follows a stochastic pattern. It is noteworthy that each
spawn point imposes constraints on the models, governing their size and rotation within
well-defined boundaries that respect the objects’ geometry and utility. In Figure 4, a layout
of 2 and 8 people is shown, respectively. Each individual is depicted in a different body
posture and is equipped with some or all of the PPE.
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To further increase the robustness of the AI model trained on the synthetic data, we
insert background noise into the virtual scene. This takes place further away on the depth
axis so as not to restrict foreground objects’ visibility. There, we place a 3D plane to surround
the camera’s viewport area, depicting real-life scenes, focusing exclusively on industrial
spaces to match our objective. The chosen image changes throughout the sampling process,
enhancing the noise resistance of the model during training. Figure 5 depicts the unity of
the 3D space, showcasing the arrangement of background noise alongside the foreground
3D objects.

The ground truth bounding boxes are provided by Perception’s [23] labeling method,
which allows quick annotation of our 3D models. The created virtual scene is equipped with
an orthographic camera able to capture bounding boxes of all objects of interest within its
viewport. During the generation process, for every sample, the ecosystem’s randomization
pipeline applies all randomizing scripts, resulting in a unique frame being sampled. It
should be mentioned that the number of generated images, as well as the classes of the
dataset, are adjustable and can be chosen by the user. The process resulted in a pool of
images, each of them having multiple instances of the foreground 3D models, along with
the same amount of JSON files containing the desired annotations for the object of interest.
Figure 6 illustrates a synthetic image generated following the proposed methodology.
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4.2. AI Model Creation

The synthetic dataset can be used to create robust object detection algorithms. Depend-
ing on the specific requirements and objectives of each application, various ML models can
be considered. It is important to select an architecture that aligns well with the needs and
performance criteria of the application.

4.2.1. AI Model Definition and Training

In this study, the YOLO architecture is chosen as an object detector due to its high
accuracy and quick inference speed. Specifically, we focus on the YOLOv5 family [39],
which offers various versions of pretrained models. Since we are interested in deploying
the trained AI model for real-time applications, we decided to utilize the YOLOv5s. This
version represents the “small” variation in this architecture, while it stands out with its
optimized design, making it highly efficient and suitable when real-time inference is
demanded. YOLOv5 employs the Generalized Intersection over Union (GIoU) loss as
a bounding box regression function [50], Equation (1). GIoU can solve the inaccurate
computation associated with non-overlapping bounding boxes.

LGIoU = 1 − IoU +

∣∣C − B ∪ Bgt
∣∣

|C| (1)

where B is the predicted box, Bgt is the ground truth bounding box, and IoU = B ∩ Bgt

B ∪ Bgt and
C is the smallest box covering B and Bgt.
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Rather than initiating the training of the YOLOv5s model from scratch, which demands
a large volume of data and considerable computational resources, we utilize the YOLOv5s
model pretrained on the COCO dataset [51] and then fine-tune it. By doing so, it is possible
to achieve robust object detection capabilities with less data and in fewer epochs. The
model is trained for 15 epochs with a batch size set at 32. The training of a model is executed
on a computer with an Nvidia RTX 4500 graphic card (GPU) (https://www.nvidia.com/en-
eu/design-visualization/rtx-a4500/, accessed on 19 December 2023), an Intel Core i9-12900
processor (CPU) (https://www.intel.com/content/www/us/en/products/sku/134597
/intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html, accessed on
19 December 2023), and 32 GB of memory.

4.2.2. AI Model Evaluation

One of the most crucial steps in the creation of an AI model is to evaluate the perfor-
mance of the trained model. The evaluation not only measures the efficacy of the trained
model but also can provide insights about the quality of training data as well as indications
for potential enhancements regarding the dataset generation procedures. The main goal of
our evaluation process is to determine the suitability of the synthetic dataset for training an
AI model effectively. Specifically, via the evaluation procedure, we can discover whether
the synthetic dataset can be used to successfully train a model.

The evaluation of AI models can be achieved by quantitative metrics as well as by
qualitative processes. Metrics such as Intersection over Union (IoU), Precision, Recall,
and Average Precision (AP) procure quantitative insights, while the visual inspections of
predicted bounding boxes provide qualitative indications. In the case of object detection
tasks, the predictions of the AI model are bounding boxes accompanied by class labels.
Having this in mind, it becomes essential to adopt appropriate evaluation metrics to assess
the performance of object detectors and the utility of a synthetic dataset for this task. In
this study, the evaluation metrics that are utilized to determine the effectiveness of trained
models on synthetic datasets are Average Precision (AP) and Mean Average Precision, as
well as visual inspection of predictions.

The Intersection over Union (IoU) measures the localization accuracy of an AI object
detector. Specifically, the IoU calculates the amount of overlap between the predicted and
the ground truth bounding boxes. In object detection, the AI model may predict multiple
bounding boxes for each object. Based on the IoU and a chosen threshold, predictions can
be categorized as true positives (TP), false positives (FP), or false negatives (FN). In practice,
the IoU threshold is often set at 0.5. Utilizing this categorization, the precision and recall
values are calculated based on Equations (2) and (3), respectively.

Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)

Consequently, based on those values, the precision–recall curve is designed. The numer-
ical representation of this curve is given by the Average Precision (AP) in Equation (4). AP
is computed for each object class and represents the weighted mean of precisions at each
threshold with the increase in recall. A high AP value indicates both high precision and
recall, while a lower AP suggests a decline in either precision or recall across a range of
confidence thresholds.

AP =
∫ 1

r=0
p(r)dr (4)

where r is the recall and p(r) is the precision as a function of recall.

https://www.nvidia.com/en-eu/design-visualization/rtx-a4500/
https://www.nvidia.com/en-eu/design-visualization/rtx-a4500/
https://www.intel.com/content/www/us/en/products/sku/134597/intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/134597/intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html
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An extension of the Average Precision is the Mean Average Precision (mAP), which
gives the precision for the entire model. The mAP is determined by taking the average of
the AP for all the classes N, Equation (5).

mAP =
1
N

N

∑
i=1

APi (5)

5. Experiments and Results

The proposed system is evaluated in a series of different experiments to identify its
robustness in generating synthetic data that can be utilized to train AI object detectors for
real-time applications.

5.1. Real-World and Synthetic Datasets Description

To evaluate the efficacy of the synthetic dataset generated following our proposed
methodology, it is crucial to contrast it with an appropriate real-image dataset, which
can be considered a benchmark. This can be achieved by comparing the performance of
trained AI models. The models are trained on both real and synthetic datasets, and they are
evaluated on the same test set to achieve comparable results. Therefore, a properly selected
open dataset is crucial to ensuring a fair and insightful comparison. The samples in the
synthetic dataset represent various scenarios and conditions of industrial setup. On the
contrary, we selected a publicly available real dataset consisting of images acquired from
real-world site environments. Both of those datasets represent the challenges encountered
in PPE detection, ensuring equitable comparison by evaluating the trained AI models’
effectiveness. The detailed description of those datasets is vital for providing a basis for the
subsequent analysis and evaluation of AI models trained on them.

Utilizing the methodology for creating a synthetic dataset, as presented in Section 3.1,
we generate a dataset of two classes, namely helmets and vests, aimed at PPE detection
in industrial environments. For ease of reference throughout this paper, we named our
synthetic dataset SYN_HV. SYN_HV comprises 600 images with a total of 7071 instances;
among these, 3510 belong to the vest class, while 3561 belong to the helmet class. We
choose to have an approximately equal number of instances in each class to prevent class
imbalance, ensuring that the trained AI model has an equal opportunity to learn each class,
therefore achieving more reliable and generalized performance across all classes.

Color Helmet and Vest (CHV) [52] is a novel, open-source dataset for PPE detection in
construction environments. The dataset consists of 6 PPE classes, including helmets of four
different colors, vests, and persons. Specifically, the CHV categorizes helmets based on
their colors, namely blue, yellow, white, and red, as different colors indicate different roles
on construction sites. It contains 1300 images, considering the site background, different
gestures, varied angles and distances, and 9209 instances in total. The CHV dataset is split
into training, validation, and test sets, comprising 80% (1064 images), 10% (133 images),
and 10% (133 images) of the total dataset, respectively.

To ensure comparability among the AI models trained on both datasets, some modifi-
cations should be performed on the CHV dataset. Specifically, the different color categories
of the CHV ‘helmet’ class might be useful in some situations; however, in our study, we are
interested in recognizing the presence of a helmet, regardless of its color. For this reason,
we combine the color-specific categories of CHV into a single ‘helmet’ category. Addi-
tionally, the ‘person’ category of the CHV dataset is removed since it does not align with
our core focus. Regarding the ‘vest’ class, it is retained as it is without any modification.
After the aforementioned modifications, the ‘helmet’ category of the CHV dataset contains
2762 instances, while the ‘vest’ class consists of 1396 instances. Figure 7 shows the number
of instances per class for both the SYN_HV and CHV datasets.
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It is worth noting that the validation and testing of both AI models, trained on real
and synthetic datasets, are performed using the same validation and test set as proposed
in the CHV dataset. This approach ensures consistency in our assessment and allows a
direct comparison between the performance of the AI models, enabling us to derive valid
conclusions about the usage of synthetic datasets during the training of AI models.

5.2. AI Model Training on Real-World and Synthetic Datasets

To assess the efficacy of our synthetic dataset SYN_HV, we utilize it to train a YOLOv5s
model. The performance of this model is compared with the performance of YOLOv5s
trained on a real-world dataset, CHV. To achieve a fair comparison, a common test set
composed of real images of CHV is used. The performance of each trained model is
quantified by precision, recall, AP, and mAP metrics.

At each training round, we adopt a learning rate of 0.01, combined with a momentum
of 0.937. During each iteration, the model processed batches of 32 images, all resized to
640 × 640 pixels. To regulate the adjustment of the model weights, we apply a weight decay
of 0.0005 and employ the Stochastic Gradient Descent (SGD) as our optimizer. Part of our
training strategy is the use of early stopping. This precautionary measure ensured that if
the model’s performance did not improve over five consecutive epochs, the training would
be terminated. Such an approach not only helps conserve computational resources but also
acts as a deterrent to potential overfitting.

Table 3 provides a comparison of performance metrics of object detectors trained on
a real-world dataset, CHV, as well as on our synthetic dataset, SYN_HV, that contains
only synthetic images. Both of those models are evaluated on the same test set of real
images. It is observed that the AI model trained on real images demonstrates superior
performance across all metrics than that trained solely on synthetic datasets. The superior
performance of the trained model on real data can be explained by its familiarity with
the real-world distributions and complexities encapsulated in the test set. On the other
hand, the model trained on synthetic images may have difficulties understanding the real
images and predicting the correct bounding boxes. Hence, the discrepancy in performance
underscores the importance of training data that closely aligns with the conditions under
which the AI model will be evaluated.

Table 3. Performance metrics comparison for trained AI models on CHV and SYN_HV.

Trained Dataset Precision Recall AP Vest AP Helmet mAP

CHV 89.6% 84.8% 86.4% 91.4% 88.9%
SYN_HV 77.5% 67.8% 67.6% 75.5% 71.6%
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5.3. Experimenting with Synthetic and Limited Amount of Real-World Data

As described in Section 4.2, an AI model trained exclusively on a synthetic dataset can-
not achieve as high performance as one trained on a real-world dataset. However, in many
real-world scenarios, the acquisition of large-scale amounts of real data is infeasible, posing
a significant challenge to the development of an effective AI model. Therefore, the combi-
nation of real and synthetic data that constitutes the training dataset seems like a promising
solution, addressing the problem of limited real data. Therefore, it is crucial to define the
optimal ratio of real-world and synthetic data to maximize the model’s performance.

Through a series of experiments, we aim to examine the potential benefits and limi-
tations of combining real and synthetic images for the creation of a training set that can
be used to train AI models for real-world applications. To achieve this, we design a series
of experiments where we begin with a relatively small number of real images and pro-
gressively augment the dataset with synthetic images. The real images are sourced from
the CHV dataset, of which 50 are allocated for the training set and 25 for the validation
set. In each experiment, we trained the YOLOv5s model on the combined training dataset
while we evaluated it on the CHV test set, comprising 133 images, to ensure a consistent
benchmark for evaluation.

Table 4 presents the number of real and synthetic images that constitute the training
set for each experiment. In the first one, working under the constraints of limited data
availability, the model is trained exclusively on a set of 50 real images. In all the following
six experiments, the number of real images remains the same while we incrementally
increase the number of synthetic images.

Table 4. Number of real-world and synthetic images for each experiment.

Experiment ID Real Images Number Synthetic Images Number

E1_50_0 50 0
E2_50_50 50 50
E3_50_100 50 100
E4_50_150 50 150
E5_50_300 50 300
E6_50_600 50 600

E7_50_1200 50 1200

YOLOv5s is trained on training datasets of the various experiments, and it is evaluated
at the same CHV test set. Table 5 presents the mAP values of trained models for each
experiment. In the initial experiment, the model, trained with only a small number of real
images, achieved a mAP of 14.3%. In the second experiment, the incorporation of synthetic
data led to a slight improvement in the model’s performance, increasing overall mAP to
16.3%. In the third one, a significant rise in mAP is observed, escalating to 71.2%. The
highest mAP value of 84.1% is achieved in the sixth experiment, in which the training set
contains 50 real images and 600 synthetic ones.

Table 5. mAP values of object detector for each experiment.

E1_50_0 E2_50_50 E3_50_100 E4_50_150 E5_50_300 E6_50_600 E7_50_1200

mAP 14.3% 16.3% 17.3% 71.2% 79.5% 84.1% 81.0%

In the last experiment, where we doubled the number of synthetic images in the
training set to 1200, it was observed that the mAP value slightly decreased to 81.0%.
One explanation for this decrease in performance is the model’s over-adaptation to the
characteristics of the synthetic data. When exposed to a significant volume of synthetic data,
the model develops a bias, becoming particularly adept at recognizing objects in virtual
conditions. Consequently, its ability to generalize and recognize objects in real-world
scenarios could be compromised. This trend suggests a potential saturation point beyond
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which adding more synthetic data may not necessarily lead to performance gains and, in
fact, could risk the model’s efficacy in real-world conditions, leading to diminished returns.

To ensure the robustness and reliability of our findings, we repeat the experiments
listed in Table 4 two more times, each time selecting a different random set of 75 images
from the CHV dataset. The methodology remains consistent. Specifically, we begin with
50 real images and then gradually introduce synthetic data to observe the impact on
performance. As illustrated in Figure 8, the performance of the models showcases similar
trends across all experiments, validating the authenticity of our initial results. It should
be mentioned that the best performance of all models is observed when combining 50 real
training images with 600 synthetic images. This configuration yields an average mAP score
of 84.3%, with a standard deviation of 0.4%.
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Remarkably, by employing a training set comprising just 50 real images combined
with synthetic data to train an object detector, we manage to bridge the performance gap,
achieving a result that is only a slight 4.7% behind the scenario of having only real images.

5.4. Synthetic Dataset of Four PPE Classes

The proposed methodology provides users and researchers with the ability to design
synthetic datasets tailored to the specific objectives of their applications. Taking advantage
of this, we utilized the proposed methodology to expeditiously create a dataset of four PPE
classes, namely vests, helmets, gloves, and goggles. By equipping our virtual workers with
this extensive set of safety equipment, we made our synthetic images more closely reflect
real-world settings where workers typically wear multiple pieces of PPE simultaneously.
This synthetic dataset is used to train YOLOv5s.

Having trained the model in these four distinct classes—vests, helmets, gloves, and
goggles—we face a challenge in its evaluation. The scarcity of open-source datasets that
encompass all these PPEs prevents the quantitative evaluation of the model. However, we
perform a qualitative evaluation by inspecting the predicted bounding boxes on the images.
We tested our model with real-world images, as shown in Figure 9, observing its behavior
and ability to accurately detect the four different PPE classes. It should be noted that the
average inference time of the model on images is 29.6 ms, demonstrating the availability of
the system to identify different PPE for real-time applications.
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Our future plans include enhancing the synthetic dataset with a small number of
real-world images depicting instances of the four PPE classes, training the model, and
integrating it into intelligent factory safety management. This aims to establish an efficient
monitoring mechanism to detect non-compliance with protective measures in industrial
environments. The system could comprise surveillance cameras to capture real-time
footage, which is then processed by the trained object detection model. Real-time detection
can trigger alerts to inform supervisors when non-compliance events occur, i.e., when
employees are not equipped with the appropriate PPE.

6. Conclusions

This paper presents a robust detection system to identify hazards in manufacturing
processes and enhance the safety management of Industry 5.0. Considering the character-
istics of the Fifth Industrial Revolution, the proposed detection system takes advantage
of more sophisticated approaches and digital methodologies, such as game development
platforms and advanced AI algorithms, to provide automated, reliable, real-time, and cost-
effective safety management capabilities. In addition, the system is flexible and adjustable
to meet the requirements imposed by the complexity of the human–machine–environment
coupling. Specifically, the synthetic dataset creation methodology provides all the method-
ologies required to generate data via a VR environment, ensuring that the data can be
modified and restructured to simulate new scenarios and environments.

The proposed system is evaluated through a series of experiments focusing on the
detection of PPE. The conducted experiments highlight the potential of generated synthetic
datasets, especially in contexts where authentic data might be lacking or challenging to
acquire. Specifically, YOLOv5s is trained on real-world data from the CHV dataset as
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well as on synthetic data, with the model trained on the former dataset to achieve higher
performance. A possible explanation for this could be that models might develop a bias
towards synthetic data generated in VR environments. This underlines the necessity to
include some real-world samples in the training set as well as to establish a balanced ratio
between synthetic and real-world data to achieve optimal model performance.

Another notable observation from the experiments is that by using just 50 real images
supplemented with 600 synthetic ones, we enrich our model’s performance, bringing it
to within just 4.7% of the result achieved with a dataset of 1064 real images. This is a
valuable observation since it proves that an AI model can be trained with a small amount
of real data, thereby significantly reducing the human effort and cost associated with data
acquisition and annotation procedures. Moreover, by exploiting the capabilities of synthetic
dataset creation methodology, we generate another dataset consisting of four PPE classes,
namely vests, helmets, gloves, and goggles, based on which we train YOLOv5s. The model
is quantitatively evaluated on real-world images since there is no openly available dataset
containing those classes. The inference time of this model is 29.6 ms, illustrating its usability
in real-time monitoring.
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Abbreviations

AI Artificial Intelligence R-CNN
Region-based Convolutional
Neural Network

AP Average Precision SGD Stochastic Gradient Descent
CHV Color Helmet and Vest SSD Single Shot Multibox Detector
FN False Negative SYN_HV Synthetic Helmet and Vest
FP False Positive TP True Positive
IoU Intersection over Union VE Virtual Environment
mAP Mean Average Precision VNE Virtual Network Embedding
ML Machine Learning VR Virtual Reality

NIOSH
National Institute for Occupational
Safety and Health

YOLO You Only Look Once

PPE Personal Protective Equipment
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