Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Kiln Characteristics
2.2. Species Selection
2.3. Carbonization Process
2.4. Immediate Analysis
2.5. Yield of Charcoal
- MY = mass yield (%);
- MC = mass of charcoal (kg);
- MGB = mass of green biomass (kg).
- Y = charcoal yield;
- V = volume of sample (m3);
- m = mass of pyrolyzed sample (ton).
2.6. Higher Heating Value
2.7. Energy Efficiency of Charcoal Production
- HHV charcoal = higher heating values of charcoal (MJ kg−1);
- HHV firewood = higher heating value of biomass (MJ kg−1).
2.8. Multivariate Exploratory Analysis
2.9. Charcoal Production Costs
2.10. Statistical Analysis
3. Results and Discussion
3.1. Carbonization Conditions
3.2. Proximal Analysis
3.3. Energy Efficiency of Charcoal Production
3.4. Charcoal Yield
3.5. Cost of Charcoal Production
3.6. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broadhead, J. Revisión de Las Estimaciones de FAOSTAT Relativas al Combustible de Madera. Unasylva 2002, 53, 41–45. [Google Scholar]
- FAO. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods; FAO: Roma, Italy, 2017; ISBN 9789251096802. [Google Scholar]
- Hasan, M.; Haseli, Y.; Karadogan, E. Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass. Energies 2018, 11, 2443. [Google Scholar] [CrossRef]
- Pereira, E.G.; Fauller, H.; Magalhães, M.; Guirardi, B.; Martins, M.A. Potential Use of Wood Pyrolysis Coproducts: A Review. Environ. Prog. Sustain. Energy 2022, 41, e13705. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Kalemba, I.; Gara, P. Carbonisation of Wood Residue into Charcoal during Low Temperature Process. Renew. Energy 2016, 85, 507–513. [Google Scholar] [CrossRef]
- Lima, M.D.R.; Patrício, E.P.S.; Junior, U.D.O.B.; de Assis, M.R.; Xavier, C.N.; Bufalino, L.; Trugilho, P.F.; Hein, P.R.G.; de Paula Protásio, T. Logging Wastes from Sustainable Forest Management as Alternative Fuels for Thermochemical Conversion Systems in Brazilian Amazon. Biomass Bioenergy 2020, 140, 105660. [Google Scholar] [CrossRef]
- Haag, V.; Zemke, V.T.; Lewandrowski, T.; Zahnen, J.; Hirschberger, P.; Bick, U.; Koch, G. The European Charcoal Trade. IAWA J. 2020, 41, 463–477. [Google Scholar] [CrossRef]
- Arias-Chalico, T. Situación Actual y Escenarios Para el Desarrollo de Biocombustibles Sólidos en México Hacia 2024 y 2030; Red Mexicana de Bioenergía: Morelia, Mexico, 2018. [Google Scholar]
- FAO. Forestry Production and Trade. Available online: https://unece.org/forests/data-forest-products-production-and-trade (accessed on 22 September 2023).
- SEMERNAT—Secretaría de Medio Ambiente y Recursos Naturales. Anuario Estadístico de La Producción Agrícola y Ganadera 2016. Sist. Integr. Estadística Agrar. 2016, 1, 1–156. [Google Scholar]
- Gobierno de Mexico Productores de Carbón Vegetal. Available online: https://www.economia.gob.mx/datamexico/es/profile/occupation/productores-de-carbon-vegetal (accessed on 3 December 2023).
- Dzurenda, L.; Banski, A. Influence of Moisture Content of Combusted Wood on the Thermal Efficiency of a Boiler. Arch. Thermodyn. 2017, 38, 63–74. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, C.; Ssempijja, I.; Lubwama, H. Thermal and Mechanical Characteristics of Local Firewood Species and Resulting Charcoal Produced by Slow Pyrolysis. Biomass Convers. Biorefin. 2021, 13, 6689–6704. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Słowiński, K.; Kożuch, A. Analysis of correct firewood seasoning by selected homeowners in the podkarpacie (Subcarpathian) region. Acta Silvestria 2019, 56, 37–47. [Google Scholar] [CrossRef]
- Price-Allison, A.; Lea-Langton, A.R.; Mitchell, E.J.S.; Gudka, B.; Jones, J.M.; Mason, P.E.; Williams, A. Emissions Performance of High Moisture Wood Fuels Burned in a Residential Stove. Fuel 2019, 239, 1038–1045. [Google Scholar] [CrossRef]
- Castellanos-Potenciano, B.P.; Carrillo, N.; Hernández, A. El comercio del carbón vegetal y su transitar hacia la bioeconomía en México. C3-BIOECONOMY Circ. Sustain. Bioeconomy 2021, 2, 55–68. [Google Scholar] [CrossRef]
- Bailis, R.; Rujanavech, C.; Dwivedi, P.; de Oliveira Vilela, A.; Chang, H.; de Miranda, R.C. Innovation in Charcoal Production: A Comparative Life-Cycle Assessment of Two Kiln Technologies in Brazil. Energy Sustain. Dev. 2013, 17, 189–200. [Google Scholar] [CrossRef]
- Surup, G.R.; Trubetskaya, A.; Tangstad, M. Charcoal as an Alternative Reductant in Ferroalloy Production: A Review. Processes 2020, 8, 1432. [Google Scholar] [CrossRef]
- Sola, P.; Schure, J.; Eba’a Atyi, R.; Gumbo, D.; Okeyo, I.; Awono, A. Woodfuel Policies and Practices in Selected Countries in Sub-Saharan Africa—A Critical Review. Bois For. Trop. 2019, 340, 27–41. [Google Scholar]
- Chidumayo, E.N.; Gumbo, D.J. The Environmental Impacts of Charcoal Production in Tropical Ecosystems of the World: A Synthesis. Energy Sustain. Dev. 2013, 17, 86–94. [Google Scholar] [CrossRef]
- Gobierno de Mexico Infografía Cocción de Alimentos. Available online: https://www.gob.mx/conuee/documentos/infografia-coccion-de-alimentos (accessed on 20 November 2023).
- Nigatu, G.; Bekele, T.; Fantu, W. Impact of Moisture Content and Mound Size on Recovery and Quality of Charcoal from Prosopis Juliflora. DC. in Rift Valley of Ethiopia. Afr. J. Plant Sci. Biotechnol. 2012, 6, 66–72. [Google Scholar]
- SEMARNAT—Secretaría de Medio Ambiente y Recursos Naturales. Documento Tecnico Unificado Ejido Ncpe Rio Escondido; SEMARNAT: Bacalar, Mexico, 2015; pp. 1–167. [Google Scholar]
- García-Quezada, J.; Musule-Lagunes, R.; Prieto-Ruíz, J.A.; Vega-Nieva, D.J.; Carrillo-Parra, A. Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico. Energies 2023, 16, 333. [Google Scholar] [CrossRef]
- ASTM D1762-84; Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM: West Conshohocken, PA, USA, 2021; pp. 1–2.
- Basu, P.; Rao, S.; Dhungana, A. An Investigation into the Effect of Biomass Particle Size on Its Torrefaction. Can. J. Chem. Eng. 2013, 91, 466–474. [Google Scholar] [CrossRef]
- Elyounssi, K.; Blin, J.; Halim, M. High-Yield Charcoal Production by Two-Step Pyrolysis. J. Anal. Appl. Pyrolysis 2010, 87, 138–143. [Google Scholar] [CrossRef]
- UNE-EN 18125; Biocombustibles Sólidos Determinación Del Poder Calorífico. UNE: Madrid, Spain, 2018.
- Lê, S.; Josse, J.; Rennes, A.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Costa, A.C.P.R.; Ramalho, F.M.G.; Ribeiro, L.C.; Trugilho, P.F.; Hein, P.R.G. Classification of Commercial Charcoal for Domestic Use by near Infrared Spectroscopy. Biomass Bioenergy 2019, 127, 105280. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Font Palma, C. Modelling of Tar Formation and Evolution for Biomass Gasification: A Review. Appl. Energy 2013, 111, 129–141. [Google Scholar] [CrossRef]
- Missio, A.L.; Mattos, B.D.; Gatto, D.A.; de Lima, E.A. Thermal Analysis of Charcoal from Fast-Growing Eucalypt Wood: Influence of Raw Material Moisture Content. J. Wood Chem. Technol. 2014, 34, 191–201. [Google Scholar] [CrossRef]
- Jesus, M.S.; Napoli, A.; Trugilho, P.F.; Abreu Júnior, Á.A.; Martinez, C.L.M.; Freitas, T.P. Energy and Mass Balance in the Pyrolysis Process of Eucalyptus Wood. Cerne 2018, 24, 288–294. [Google Scholar] [CrossRef]
- Zola, F.C.; Colmenero, J.C.; Aragão, F.V.; Rodrigues, T.; Junior, A.B. Multicriterial Model for Selecting a Charcoal Kiln. Energy 2020, 190, 116377. [Google Scholar] [CrossRef]
- Assis, M.R.; Brancheriau, L.; Napoli, A.; Trugilho, P.F. Factors Affecting the Mechanics of Carbonized Wood: Literature Review. Wood Sci. Technol. 2016, 50, 519–536. [Google Scholar] [CrossRef]
- Guo, Y.; Bustin, R.M. FTIR Spectroscopy and Reflectance of Modern Charcoals and Fungal Decayed Woods: Implications for Studies of Inertinite in Coals. Int. J. Coal Geol. 1998, 37, 29–53. [Google Scholar] [CrossRef]
- Bustos-Vanegas, J.D.; Arêdes, M.; Gomes, A.; Mellmann, J. Experimental Characterization of Self-Heating Behavior of Charcoal from Eucalyptus Wood. Fuel 2019, 244, 412–418. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Ronsse, F.; Nachenius, R.W.; Prins, W. Carbonization of Biomass; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780444632906. [Google Scholar]
- Mfomo, J.Z.; Biwolé, A.B.; Fongzossie, E.F.; Ekassi, G.T.; Hubert, D.; Ducenne, H.; Tamba, J.G.; Mouangue, R. Carbonization Techniques and Wood Species Influence Quality Attributes of Charcoals Produced from Industrial Sawmill Residues in Eastern Cameroon. Bois For. Trop. 2020, 345, 63–72. [Google Scholar] [CrossRef]
- da Silva, C.M.S.; Carneiro, A.D.C.O.; Vital, B.R.; Figueiró, C.G.; Fialho, L.d.F.; de Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. Biomass Torrefaction for Energy Purposes—Definitions and an Overview of Challenges and Opportunities in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2426–2432. [Google Scholar] [CrossRef]
- Barros, J.A.S.; Krause, M.C.; Lazzari, E.; Bjerk, T.R.; do Amaral, A.L.; Caramão, E.B.; Krause, L.C. Chromatographic Characterization of Bio-Oils from Fast Pyrolysis of Sugar Cane Residues (Straw and Bagasse) from Four Genotypes of the Saccharum Complex. Microchem. J. 2018, 137, 30–36. [Google Scholar] [CrossRef]
- EN 1860-2:2005; Applicances, Solid Fuels and Firelighters for Barbecueing—Part 2: Barbecue Charcoal and Barbecue Charcoal Briquettes—Requiriments and Test Methods. AENOR: Madrid, Spain, 2005.
- FAO. Métodos Simples Para Fabricar Carbón Vegetal; FAO: Roma, Italy, 1983. [Google Scholar]
- Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.; Sinha, O.P. Characterization of Charcoals Produced from Acacia, Albizia and Leucaena for Application in Ironmaking. Fuel 2022, 320, 123991. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Eletta, O.A.A.; Adeniyi, A.G. Biomass Carbonisation in Retort Kilns: Process Techniques, Product Quality and Future Perspectives. Bioresour. Technol. Rep. 2022, 17, 100934. [Google Scholar] [CrossRef]
- Canal, W.D.; Carvalho, A.; Figueiró, C.; Carneiro, A.; Fialho, L.; Donato, D.B. Impact of Wood Moisture in Charcoal Production and Quality. Floresta Ambiente 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Sangsuk, S.; Buathong, C.; Suebsiri, S. High-Energy Conversion Efficiency of Drum Kiln with Heat Distribution Pipe for Charcoal and Biochar Production. Energy Sustain. Dev. 2020, 59, 1–7. [Google Scholar] [CrossRef]
- Leme, M.M.V.; Venturini, O.J.; Lora, E.E.S.; Rocha, M.H.; Luz, F.C.; de Almeida, W.; de Moura, D.C.; de Moura, L.F. Electricity Generation from Pyrolysis Gas Produced in Charcoal Manufacture: Technical and Economic Analysis. J. Clean. Prod. 2018, 194, 219–242. [Google Scholar] [CrossRef]
- INEGI. Encuesta Nacional Sobre Consumo de Energéticos en Viviendas Particulares (ENCEVI); INEGI: Aguascalientes, Mexico, 2018. [Google Scholar]
- Argueta Spínola, C. Descripción y Análisis de Dos Métodos de Producción de Carbón Vegetal en el Estado de Tamaulipas. In Tesis Licenciatura; Universidad Autónoma Chapingo: Texcoco, Mexico, 2006. [Google Scholar]
- Weather-Atlas. Available online: https://www.weather-atlas.com/es/mexico/chetumal (accessed on 26 November 2023).
- Sparrevik, M.; Cornelissen, G.; Sparrevik, M.; Adam, C.; Martinsen, V.; Cornelissen, G.; Cornelissen, G. Emissions of Gases and Particles from Charcoal/Biochar Production in Rural Areas Using Medium-Sized Traditional and Improved “Retort” Kilns. Biomass Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Subbiah, S.; Bartocci, P.; Yang, H.; Fantozzi, F. Carbonization Using an Improved Natural Draft Retort Reactor in India: Comparison between the Performance of Two Woody Biomasses, Prosopis Juliflora and Casuarina Equisetifolia. Fuel 2021, 285, 119095. [Google Scholar] [CrossRef]
- da Costa, P. La Producción del Carbón Vegetal. In Enérgia—Investigaciones en América del Sur; Chiacchiaring, H., Ed.; Universidad Nacional del Sur: Bahia Blanca, Argentina; Ediuns: Bahia Blanca, Argentina, 2017; pp. 69–88. [Google Scholar]
- Hasan, M.M.; Hu, X.; Gunawan, R.; Li, C.Z. Pyrolysis of Large Mallee Wood Particles: Temperature Gradients within a Pyrolysing Particle and Effects of Moisture Content. Fuel Process. Technol. 2017, 158, 163–171. [Google Scholar] [CrossRef]
Burn | Firewood Moisture Content (%) | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Total Time (h) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R.T. * - 100 °C) | Time in Phase (h) | 100–200 °C (°C/min) | Time in Phase (h) | 200–280 °C (°C/min) | Time in Phase (h) | 280-M.T. ** (°C) (°C/min) | Time (h) in Phase | M.T. **-R.T. (°C/min) *** | Time in Phase (h) | |||
I | 79.31 ± 14.29 | 0.56 | 3 | 0.03 | 50 | 0.07 | 18 | 0.07 | 53 | −0.09 | 84 | 208 |
II | 48.99 ± 14.54 | 0.17 | 10 | 0.12 | 14 | 0.33 | 4 | 0.16 | 24 | −0.09 | 82 | 134 |
III | 50.68 ± 14.98 | 0.42 | 4 | 0.05 | 34 | 0.19 | 7 | 0.07 | 51 | −0.09 | 86 | 182 |
Burn | Firewood Loaded (kg) | Charcoal Recovered (kg) | HHV Firewood into the Kiln (MJ) | HHV Charcoal Recovered (MJ) | Firewood Loaded (MWh) | Charcoal Recovered (MWh) | Kiln Energy Efficiency (%) |
---|---|---|---|---|---|---|---|
I | 11,525.00 | 2549.02 | 224,046.00 | 75,145.11 | 62.24 | 20.87 | 33.53 |
II | 11,252.30 | 1839.62 | 223,920.77 | 52,705.11 | 62.20 | 14.64 | 23.53 |
III | 11,514.26 | 1819.60 | 229,364.06 | 55,079.30 | 63.71 | 15.30 | 24.01 |
Burn | Bags of Charcoal (19 Kilograms per Bag) | Market Price | Cost of Production per Kilogram of Charcoal | HHV per Bag | Cost per MJ |
---|---|---|---|---|---|
I | 134.15 | MXN 25,490 (USD 1416.11) | MXN 2.16 (USD 0.12) | 560.29 | MXN 0.339 (USD 0.018) |
II | 96.82 | MXN 18,396 (USD 1022.01) | MXN 2.88 (USD 0.16) | 544.35 | MXN 0.349 (USD 0.019) |
III | 95.76 | MXN 18,196 (USD 1010.88) | MXN 3.06 (USD 0.17) | 575.24 | MXN 0.330 (USD 0.018) |
Correlation Matrix (Pearson (n)): | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | CMC | VM | ASH | FC | HHV | MY | FMC | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
CMC | 1 | −0.047 | 0.524 | −0.149 | −0.141 | 0.084 | 0.301 | 0.207 | −0.188 | −0.220 | −0.152 |
VM | −0.047 | 1 | −0.016 | −0.959 | −0.777 | 0.288 | 0.076 | −0.287 | 0.391 | 0.200 | 0.524 |
ASH | 0.524 | −0.016 | 1 | −0.261 | −0.397 | −0.071 | −0.123 | 0.010 | −0.051 | 0.022 | −0.108 |
FC | −0.149 | −0.959 | −0.261 | 1 | 0.856 | −0.267 | −0.065 | 0.260 | −0.352 | −0.184 | −0.470 |
HHV | −0.141 | −0.777 | −0.397 | 0.856 | 1 | −0.384 | 0.310 | 0.367 | −0.429 | −0.313 | −0.501 |
MY | 0.084 | 0.288 | −0.071 | −0.267 | −0.384 | 1 | −0.075 | 0.382 | −0.313 | −0.430 | −0.203 |
FMC | 0.301 | 0.076 | −0.123 | −0.065 | 0.310 | −0.075 | 1 | 0.565 | −0.497 | −0.610 | −0.382 |
Phase 1 | 0.207 | −0.287 | 0.010 | 0.260 | 0.367 | 0.382 | 0.565 | 1 | −0.989 | −0.993 | −0.935 |
Phase 2 | −0.188 | 0.391 | −0.051 | −0.352 | −0.429 | −0.313 | −0.497 | −0.989 | 1 | 0.965 | 0.977 |
Phase 3 | −0.220 | 0.200 | 0.022 | −0.184 | −0.313 | −0.430 | −0.610 | −0.993 | 0.965 | 1 | 0.887 |
Phase 4 | −0.152 | 0.524 | −0.108 | −0.470 | −0.501 | −0.203 | −0.382 | −0.935 | 0.977 | 0.887 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Quezada, J.; Musule-Lagunes, R.; Wehenkel, C.; Prieto-Ruíz, J.A.; Núñez-Retana, V.; Carrillo-Parra, A. Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln. Fuels 2024, 5, 1-16. https://doi.org/10.3390/fuels5010001
García-Quezada J, Musule-Lagunes R, Wehenkel C, Prieto-Ruíz JA, Núñez-Retana V, Carrillo-Parra A. Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln. Fuels. 2024; 5(1):1-16. https://doi.org/10.3390/fuels5010001
Chicago/Turabian StyleGarcía-Quezada, Juan, Ricardo Musule-Lagunes, Christian Wehenkel, José Angel Prieto-Ruíz, Víctor Núñez-Retana, and Artemio Carrillo-Parra. 2024. "Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln" Fuels 5, no. 1: 1-16. https://doi.org/10.3390/fuels5010001
APA StyleGarcía-Quezada, J., Musule-Lagunes, R., Wehenkel, C., Prieto-Ruíz, J. A., Núñez-Retana, V., & Carrillo-Parra, A. (2024). Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln. Fuels, 5(1), 1-16. https://doi.org/10.3390/fuels5010001