Recent Advances in Triboelectric Materials for Active Health Applications
Abstract
1. Introduction
2. Mechanism and Modification of Triboelectric Materials
2.1. Triboelectric Mode and Common Mechanism
2.2. Bioinspired Structural Design
2.3. Surface Charge Mosaic
2.4. Charge Dissipation and Self-Restacking
3. Active Health Applications
3.1. Biochemical Indicators Monitoring

3.2. Posture and Gait Monitoring

3.3. All-Weather Health Monitoring

4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Tao, X.; Peng, Z. Upper Limits for Output Performance of Contact-Mode Triboelectric Nanogenerator Systems. Nano Energy 2019, 57, 66–73. [Google Scholar] [CrossRef]
- Yang, B.; Zeng, W.; Peng, Z.; Liu, S.; Chen, K.; Tao, X. A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source. Adv. Energy Mater. 2016, 6, 1600505. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Y.; Ma, K.; Liu, S.; Tao, X. Recent Advances in Wearable Textile-based Triboelectric Generator Systems for Energy Harvesting from Human Motion. EcoMat 2020, 2, e12054. [Google Scholar] [CrossRef]
- Lim, K.-W.; Peddigari, M.; Park, C.H.; Lee, H.Y.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; Choi, J.-H.; et al. A High Output Magneto-Mechano-Triboelectric Generator Enabled by Accelerated Water-Soluble Nano-Bullets for Powering a Wireless Indoor Positioning System. Energy Environ. Sci. 2019, 12, 666–674. [Google Scholar] [CrossRef]
- Niu, S.; Wang, S.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source. Energy Environ. Sci. 2013, 6, 3576. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Seol, M.-L.; Lee, S.-H.; Han, J.-W.; Kim, D.; Cho, G.-H.; Choi, Y.-K. Impact of Contact Pressure on Output Voltage of Triboelectric Nanogenerator Based on Deformation of Interfacial Structures. Nano Energy 2015, 17, 63–71. [Google Scholar] [CrossRef]
- Vasandani, P.; Mao, Z.-H.; Jia, W.; Sun, M. Relationship between Triboelectric Charge and Contact Force for Two Triboelectric Layers. J. Electrost. 2017, 90, 147–152. [Google Scholar] [CrossRef]
- Jang, D.; Kim, Y.; Kim, T.Y.; Koh, K.; Jeong, U.; Cho, J. Force-Assembled Triboelectric Nanogenerator with High-Humidity-Resistant Electricity Generation Using Hierarchical Surface Morphology. Nano Energy 2016, 20, 283–293. [Google Scholar] [CrossRef]
- Kwak, M.S.; Lim, K.-W.; Lee, H.Y.; Peddigari, M.; Jang, J.; Jeong, C.K.; Ryu, J.; Yoon, W.-H.; Yi, S.N.; Hwang, G.-T. Multiscale Surface Modified Magneto-Mechano-Triboelectric Nanogenerator Enabled by Eco-Friendly NaCl Imprinting Stamp for Self-Powered IoT Applications. Nanoscale 2021, 13, 8418–8424. [Google Scholar] [CrossRef] [PubMed]
- Mule, A.R.; Dudem, B.; Yu, J.S. High-Performance and Cost-Effective Triboelectric Nanogenerators by Sandpaper-Assisted Micropatterned Polytetrafluoroethylene. Energy 2018, 165, 677–684. [Google Scholar] [CrossRef]
- Ahn, J.; Zhao, Z.-J.; Choi, J.; Jeong, Y.; Hwang, S.; Ko, J.; Gu, J.; Jeon, S.; Park, J.; Kang, M.; et al. Morphology-Controllable Wrinkled Hierarchical Structure and Its Application to Superhydrophobic Triboelectric Nanogenerator. Nano Energy 2021, 85, 105978. [Google Scholar] [CrossRef]
- Choi, J.; Jo, W.; Lee, S.Y.; Jung, Y.S.; Kim, S.-H.; Kim, H.-T. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. ACS Nano 2017, 11, 7821–7828. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano 2018, 12, 3964–3974. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Pan, C.; Guo, W.; Chen, C.-Y.; Zhou, Y.; Yu, R.; Wang, Z.L. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Lett. 2012, 12, 4960–4965. [Google Scholar] [CrossRef]
- Zhang, A.; Bai, H.; Li, L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef]
- Baytekin, H.T.; Patashinski, A.Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B.A. The Mosaic of Surface Charge in Contact Electrification. Science 2011, 333, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, Y.I.; Adamkiewicz, W.; Siek, M.; Grzybowski, B.A. Charge Mosaics on Contact-Electrified Dielectrics Result from Polarity-Inverting Discharges. Nat. Phys. 2022, 18, 1347–1355. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Liu, C.; Zhou, Y.S.; Wang, Z.L. Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized-Air Injection: Methodology and Theoretical Understanding. Adv. Mater. 2014, 26, 6720–6728. [Google Scholar] [CrossRef]
- Liu, D.; Yin, X.; Guo, H.; Zhou, L.; Li, X.; Zhang, C.; Wang, J.; Wang, Z.L. A Constant Current Triboelectric Nanogenerator Arising from Electrostatic Breakdown. Sci. Adv. 2019, 5, eaav6437. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Dai, Y.; Zhao, Z.; Wang, A.; Zhang, T.; Wang, Z.L. Achieving Ultrahigh Triboelectric Charge Density for Efficient Energy Harvesting. Nat. Commun. 2017, 8, 88. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, Q.; Zheng, Y.; Jia, X.; Qin, Y. A Self-Improving Triboelectric Nanogenerator with Improved Charge Density and Increased Charge Accumulation Speed. Nat. Commun. 2018, 9, 3773. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, W.; Zi, Y.; Lu, Y.; Ji, L.; Liu, F.; Wu, C.; Wang, Z.L. Triboelectric Microplasma Powered by Mechanical Stimuli. Nat. Commun. 2018, 9, 3733. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.; Liu, Y.; Yuan, X.; Chella, R.; Ma, T. Aggregation Kinetics of Human Mesenchymal Stem Cells under Wave Motion. Biotechnol. J. 2017, 12, 1600448. [Google Scholar] [CrossRef]
- Kaddar, B.; Aoustin, Y.; Chevallereau, C. Arm Swing Effects on Walking Bipedal Gaits Composed of Impact, Single and Double Support Phases. Robot. Auton. Syst. 2015, 66, 104–115. [Google Scholar] [CrossRef]
- Hou, Y.; Dong, X.; Li, D.; Shi, D.; Tang, W.; Wang, Z.L. Self-Powered Underwater Force Sensor Based on a T-Shaped Triboelectric Nanogenerator for Simultaneous Detection of Normal and Tangential Forces. Adv. Funct. Mater. 2023, 33, 2305719. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, T.; Li, Y.; Wei, D.; Tao, B.; Yin, Z.; Zhang, C.; Wu, H. Multidimensional Force Sensors Based on Triboelectric Nanogenerators for Electronic Skin. ACS Appl. Mater. Interfaces 2021, 13, 56320–56328. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lu, W.; Li, H.; Shi, X.; Peng, Z.; Cao, X. Model-Driven Triboelectric Sensors for Multidimensional Tactile Perception. Nano Energy 2023, 114, 108658. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Li, W.; Dong, J.; Zhang, X.; Fan, F.R. Recent Progress in Advanced Units of Triboelectric Electronic Skin. Adv. Mater. Technol. 2023, 8, 2200834. [Google Scholar] [CrossRef]
- Ao, C.K.; Jiang, Y.; Zhang, L.; Yan, C.; Ma, J.; Liu, C.; Jiang, Y.; Zhang, W.; Soh, S. Balancing Charge Dissipation and Generation: Mechanisms and Strategies for Achieving Steady-State Charge of Contact Electrification at Interfaces of Matter. J. Mater. Chem. A 2022, 10, 19572–19605. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Wang, Z.L. Contact Electrification at the Liquid–Solid Interface. Chem. Rev. 2022, 122, 5209–5232. [Google Scholar] [CrossRef]
- Shi, X.; Wei, Y.; Yan, R.; Hu, L.; Zhi, J.; Tang, B.; Li, Y.; Yao, Z.; Shi, C.; Yu, H.-D.; et al. Leaf Surface-Microstructure Inspired Fabrication of Fish Gelatin-Based Triboelectric Nanogenerator. Nano Energy 2023, 109, 108231. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Kim, Y.; Bae, S.; Kim, T.-W.; Park, K.-I.; Hong, B.H.; Jeong, C.K.; Lee, S.-K. Laser-Directed Synthesis of Strain-Induced Crumpled MoS2 Structure for Enhanced Triboelectrification toward Haptic Sensors. Nano Energy 2020, 78, 105266. [Google Scholar] [CrossRef]
- Tcho, I.-W.; Kim, W.-G.; Jeon, S.-B.; Park, S.-J.; Lee, B.J.; Bae, H.-K.; Kim, D.; Choi, Y.-K. Surface Structural Analysis of a Friction Layer for a Triboelectric Nanogenerator. Nano Energy 2017, 42, 34–42. [Google Scholar] [CrossRef]
- Gong, J.; Xu, B.; Yang, Y.; Wu, M.; Yang, B. An Adhesive Surface Enables High-Performance Mechanical Energy Harvesting with Unique Frequency-Insensitive and Pressure-Enhanced Output Characteristics. Adv. Mater. 2020, 32, 1907948. [Google Scholar] [CrossRef]
- Baig, M.M.; Saqib, Q.M.; Noman, M.; Sheeraz, M.; Rasheed, A.; Yousuf, M.; Lee, E.; Kim, J.; Ko, Y.; Patil, C.S.; et al. Novel Intercalation Approach in MXene Using Modified Silica Nanospheres to Enhance the Surface Charge Density for Superior Triboelectric Performance. Adv. Funct. Mater. 2024, 34, 2408271. [Google Scholar] [CrossRef]
- Rasheed, A.; Ajmal, S.; He, W.; Lee, S.G.; Dastgeer, G.; Zhang, H.; Shu, L.; Kang, D.J.; Li, P.; Wu, M.; et al. Advancing Self-Powered Devices with Novel MXene/Graphene Oxide/Siloxene Frameworks on Textiles: Bridging Chemistry and Sustainability. Nano Lett. 2025, 25, 6942–6949. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Yousuf, M.; Noman, M.; Mannan, A.; Patil, C.S.; Kim, J.; Patil, S.R.; Ko, Y.; Chodankar, N.R.; Bae, J. Arbitrary Directional Triboelectric Nanogenerators: Advanced Energy Harvesting for Sustainable Future. Nano Energy 2025, 133, 110456. [Google Scholar] [CrossRef]
- Kim, J.; Chougale, M.Y.; Shaukat, R.A.; Patil, S.R.; Noman, M.; Patil, C.S.; Saqib, Q.M.; Ko, Y.; Bae, J. F8BT-Based Highly Sensitive Humidity Sensor for Metaverse Interfacing. Sens. Actuators B Chem. 2024, 398, 134717. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Noman, M.; Saqib, Q.M.; Umair, A.; Baig, M.M.; Yousuf, M.; Chougale, M.Y.; Kim, J.; Patil, S.R.; Patil, C.S.; et al. Multi-Layered Quasi-2D Perovskite Based Triboelectric Nanogenerator. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135728. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, Y.; Sun, C.; Zhao, X.; Jiao, C.; Du, A.; Wang, Q.; Mao, Y.; Liu, B. Wearable Biosensors for Real-Time Sweat Analysis and Body Motion Capture Based on Stretchable Fiber-Based Triboelectric Nanogenerators. Biosens. Bioelectron. 2022, 205, 114115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Z.; Yang, Z.; Song, X. High-Performance Flexible Self-Powered Tin Disulfide Nanoflowers/Reduced Graphene Oxide Nanohybrid-Based Humidity Sensor Driven by Triboelectric Nanogenerator. Nano Energy 2020, 67, 104251. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, X.; Liu, T.; Zhu, Y.; Wu, D.; Bai, Y.; Du, G.; Luo, B.; Zhang, S.; Chi, M.; et al. Directional Moisture-Wicking Triboelectric Materials Enabled by Laplace Pressure Differences. Nano Lett. 2024, 24, 7125–7133. [Google Scholar] [CrossRef]
- Qin, Y.; Mo, J.; Liu, Y.; Zhang, S.; Wang, J.; Fu, Q.; Wang, S.; Nie, S. Stretchable Triboelectric Self-Powered Sweat Sensor Fabricated from Self-Healing Nanocellulose Hydrogels. Adv. Funct. Mater. 2022, 32, 2201846. [Google Scholar] [CrossRef]
- Liu, S.; Li, W.; Wang, X.; Lu, L.; Yao, Y.; Lai, S.; Xu, Y.; Yang, J.; Hu, Z.; Gong, X.; et al. Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare. ACS Nano 2025, 19, 3531–3548. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Jiang, B.; Dai, X.; Guo, Z.; Niu, J.; Dong, Z.; Long, Y.; Hu, W. Self-Adhesive, Mechanically Strong, and Conductive Organogel for Flexible/Wearable Electronics and Underwater Electronic Skin. Chem. Eng. J. 2024, 500, 157551. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, H.; Gao, Z.; Liu, J.; Zhang, F.; Wen, Z.; Sun, X. Energy Autonomous Electronic Skin with Direct Temperature-Pressure Perception. Nano Energy 2022, 98, 107273. [Google Scholar] [CrossRef]
- Shi, S.; Ming, Y.; Wu, H.; Zhi, C.; Yang, L.; Meng, S.; Si, Y.; Wang, D.; Fei, B.; Hu, J. A Bionic Skin for Health Management: Excellent Breathability, In Situ Sensing, and Big Data Analysis. Adv. Mater. 2024, 36, 2306435. [Google Scholar] [CrossRef]
- Cao, J.; Liang, F.; Li, H.; Li, X.; Fan, Y.; Hu, C.; Yu, J.; Xu, J.; Yin, Y.; Li, F.; et al. Ultra-robust Stretchable Electrode for E-skin: In Situ Assembly Using a Nanofiber Scaffold and Liquid Metal to Mimic Water-to-net Interaction. InfoMat 2022, 4, e12302. [Google Scholar] [CrossRef]
- Ye, L.; Tang, Z.; Feng, J.; Jiang, Y.-P.; Tang, X.-G.; Zhou, Y.-C.; Xing, X.; Gao, J. A Flexible Self-Powered Multimodal Sensor with Low-Coupling Temperature, Pressure and Humidity Detecting for Physiological Monitoring and Human-Robot Collaboration. Chem. Eng. J. 2025, 519, 164866. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, B.; Han, T.; Xu, Y.; Bi, S.; Shi, X.; Peng, Z.; Cao, X. Triboelectrically Self-Sensing Respiratory Ventilator Masks for Monitoring, Diagnosis, Therapy, and Human-Machine Interaction. Nano Energy 2024, 124, 109516. [Google Scholar] [CrossRef]
- Sim, M.T.; Ee, Z.Y.; Lim, Y.H.; Sia, T.S.; Ong, D.T.K.; Koay, J.S.C.; Goh, B.T.; Yong, Y.S.; Aw, K.C.; Tan, S.T.; et al. Instant Disinfecting Face Masks Utilizing Electroporation Powered by Respiration-Driven Triboelectric Nanogenerators. Adv. Funct. Mater. 2024, 34, 2410062. [Google Scholar] [CrossRef]
- Kanokpaka, P.; Chang, L.-Y.; Wang, B.-C.; Huang, T.-H.; Shih, M.-J.; Hung, W.-S.; Lai, J.-Y.; Ho, K.-C.; Yeh, M.-H. Self-Powered Molecular Imprinted Polymers-Based Triboelectric Sensor for Noninvasive Monitoring Lactate Levels in Human Sweat. Nano Energy 2022, 100, 107464. [Google Scholar] [CrossRef]
- Kang, M.; Jang, N.-Y.; Kim, Y.-J.; Ro, H.-J.; Kim, D.; Kim, Y.; Kim, H.T.; Kwon, H.M.; Ahn, J.-H.; Choi, B.-O.; et al. Virus Blocking Textile for SARS-CoV-2 Using Human Body Triboelectric Energy Harvesting. Cell Rep. Phys. Sci. 2022, 3, 100813. [Google Scholar] [CrossRef]
- Jeon, J.; Kang, D.; Kim, S.-W. Advances in Triboelectric Nanogenerators for Microbial Disinfection. Micromachines 2025, 16, 281. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Lee, Y.; Lee, M.-G.; Song, W.J.; Park, J.-U.; Sun, J.-Y. Accelerated Wound Healing with an Ionic Patch Assisted by a Triboelectric Nanogenerator. Nano Energy 2021, 79, 105463. [Google Scholar] [CrossRef]
- Du, S.; Suo, H.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z.; Zhou, N.; Zhang, L.; Tao, J.; Zhu, J. Self-Powered and Photothermal Electronic Skin Patches for Accelerating Wound Healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
- Du, S.; Zhou, N.; Xie, G.; Chen, Y.; Suo, H.; Xu, J.; Tao, J.; Zhang, L.; Zhu, J. Surface-Engineered Triboelectric Nanogenerator Patches with Drug Loading and Electrical Stimulation Capabilities: Toward Promoting Infected Wounds Healing. Nano Energy 2021, 85, 106004. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, T.; Han, F.; Cao, L.; Li, M.; Ge, Z.; Sun, H.; Wu, H.; Wu, W.; Zhou, N.; et al. A Wearable Self-Powered Microneedle System Based on Conductive Drugs for Infected Wound Healing: A New Electrical Stimulation Delivery Strategy. Chem. Eng. J. 2024, 480, 148347. [Google Scholar] [CrossRef]
- Qian, L.; Jin, F.; Wei, Z.; Li, T.; Sun, Z.; Lai, C.; Ma, J.; Xiong, R.; Ma, X.; Wang, F.; et al. Wearable, Self-powered, Drug-Loaded Electronic Microneedles for Accelerated Tissue Repair of Inflammatory Skin Disorders. Adv. Funct. Mater. 2023, 33, 2209407. [Google Scholar] [CrossRef]
- Du, N.; Fan, Y.; Zhang, Y.; Huang, H.; Lyu, Y.; Cai, R.; Zhang, Y.; Zhang, T.; Guan, Y.; Nan, K. Wireless, Programmable, and Refillable Hydrogel Bioelectronics for Enhanced Diabetic Wound Healing. Adv. Sci. 2024, 11, 2407820. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Wang, S.; Zheng, M.; Wang, Z.; Liu, Z.; Wang, Z.L.; Li, L. Implantable, Biodegradable, and Wireless Triboelectric Devices for Cancer Therapy through Disrupting Microtubule and Actins Dynamics. Adv. Mater. 2023, 35, 2303962. [Google Scholar] [CrossRef]
- Gopal, K.; Choi, S.Y.; Lee, H.J.; Ko, S.W.; Krishnamoorthi Kaliannagounder, V.; Park, C.H. Smart Triboelectric Bilayer Vascular Graft with Integrated Drug Delivery and Real-Time Hemodynamic Sensing. Nano Energy 2025, 144, 111391. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Yang, G.; Hao, X.; Lv, X.; Wu, F.; Liu, J.; Zhang, Y. Wearable and Self-Powered Sensors Made by Triboelectric Nanogenerators Assembled from Antibacterial Bromobutyl Rubber. Nano Energy 2021, 82, 105769. [Google Scholar] [CrossRef]
- Lu, J.; He, Z.; Lin, Z.; Deng, X.; Huang, B.; Lin, B.; Fu, L.; Xu, C. Flexible, Wearable Triboelectric Rubber with Tunable Surface Charge Density Enabled by Regulation of Surface Functional Group Density and Permittivity. Chem. Eng. J. 2024, 498, 155315. [Google Scholar] [CrossRef]
- Wang, S.; Gao, J.; Lu, F.; Wang, F.; You, Z.; Huang, M.; Fang, W.; Liu, X.; Li, Y.; Liu, Y. Human Motion Recognition by a Shoes-Floor Triboelectric Nanogenerator and Its Application in Fall Detection. Nano Energy 2023, 108, 108230. [Google Scholar] [CrossRef]
- Zhou, H.; Gui, Y.; Gu, G.; Ren, H.; Zhang, W.; Du, Z.; Cheng, G. A Plantar Pressure Detection and Gait Analysis System Based on Flexible Triboelectric Pressure Sensor Array and Deep Learning. Small 2025, 21, 2405064. [Google Scholar] [CrossRef]
- Zheng, Q.; Dai, X.; Wu, Y.; Liang, Q.; Wu, Y.; Yang, J.; Dong, B.; Gao, G.; Qin, Q.; Huang, L. Self-powered High-resolution Smart Insole System for Plantar Pressure Mapping. BMEMat 2023, 1, e12008. [Google Scholar] [CrossRef]
- Liu, S.; Yu, W.; Sui, Y.; Zhang, C.; Shi, L.; Dong, S.; Peng, L. Simply Structured Wearable Triboelectric Nanogenerator with Milligram-Level Sensitivity for Biomechanical Energy Harvesting and Motion Detection. J. Sci. Adv. Mater. Devices 2025, 10, 100956. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D. A Flexible Triboelectric Sensor Based on P(VDF-Co-HFP)/MXene for Breath and Posture Monitoring in Basketball Motion. Mater. Technol. 2023, 38, 2262131. [Google Scholar] [CrossRef]
- Luo, B.; Cai, C.; Liu, T.; Meng, X.; Zhuang, X.; Liu, Y.; Gao, C.; Chi, M.; Zhang, S.; Wang, J.; et al. Multiscale Structural Nanocellulosic Triboelectric Aerogels Induced by Hofmeister Effect. Adv. Funct. Mater. 2023, 33, 2306810. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of Joint and Spinal Bending or Stretching via a Retractable and Wearable Badge Reel. Nat. Commun. 2021, 12, 2950. [Google Scholar] [CrossRef]
- Hui, X.; Tang, L.; Zhang, D.; Yan, S.; Li, D.; Chen, J.; Wu, F.; Wang, Z.L.; Guo, H. Acoustically Enhanced Triboelectric Stethoscope for Ultrasensitive Cardiac Sounds Sensing and Disease Diagnosis. Adv. Mater. 2024, 36, 2401508. [Google Scholar] [CrossRef]
- Meng, K.; Zhao, S.; Zhou, Y.; Wu, Y.; Zhang, S.; He, Q.; Wang, X.; Zhou, Z.; Fan, W.; Tan, X.; et al. A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter 2020, 2, 896–907. [Google Scholar] [CrossRef]
- Heo, D.; Song, M.; Chung, S.; Cha, K.; Kim, Y.; Chung, J.; Hwang, P.T.J.; Lee, J.; Jung, H.; Jin, Y.; et al. Inhalation-Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gas-Mask-Integrated Self-Powered Multifunctional System. Adv. Energy Mater. 2022, 12, 2201001. [Google Scholar] [CrossRef]
- Li, R.; Wei, X.; Xu, J.; Chen, J.; Li, B.; Wu, Z.; Wang, Z. Smart Wearable Sensors Based on Triboelectric Nanogenerator for Personal Healthcare Monitoring. Micromachines 2021, 12, 352. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Peng, X.; Wei, C.; Wang, Z.; He, J.; Sheng, H.; Jiang, T.; Dong, K. A Moisture-Proof, Anti-Fouling, and Low Signal Attenuation All-Nanofiber Triboelectric Sensor for Self-Powered Respiratory Health Monitoring. Adv. Funct. Mater. 2025, 35, 2415421. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, J.; Xiao, X.; Zou, Y.; Zhao, X.; Zhou, Y.; Chen, J. A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring. Adv. Mater. 2022, 34, 2200252. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Xie, G.; Gong, Q.; Su, Y. Walking Energy Harvesting and Self-Powered Tracking System Based on Triboelectric Nanogenerators. Beilstein J. Nanotechnol. 2020, 11, 1590–1595. [Google Scholar] [CrossRef]
- Kou, H.; Wang, H.; Cheng, R.; Liao, Y.; Shi, X.; Luo, J.; Li, D.; Wang, Z.L. Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Appl. Mater. Interfaces 2022, 14, 23998–24007. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, Y.; Luo, Y.; Jie, Y.; Lan, F.; Yang, J.; Wang, Z.L.; Cao, X. Triboelectric Patch Based on Maxwell Displacement Current for Human Energy Harvesting and Eye Movement Monitoring. ACS Nano 2022, 16, 11884–11891. [Google Scholar] [CrossRef]
- Zhou, Z.; Padgett, S.; Cai, Z.; Conta, G.; Wu, Y.; He, Q.; Zhang, S.; Sun, C.; Liu, J.; Fan, E.; et al. Single-Layered Ultra-Soft Washable Smart Textiles for All-around Ballistocardiograph, Respiration, and Posture Monitoring during Sleep. Biosens. Bioelectron. 2020, 155, 112064. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Z.; Cao, R.; Li, X.; Yu, H.; Shen, Z.; Yang, W.; Li, F.; Liu, Y.; Li, H.; et al. Multipurpose Smart Textile with Integration of Efficient Energy Harvesting, All-Season Switchable Thermal Management and Self-Powered Sensing. Adv. Funct. Mater. 2025, e09281. [Google Scholar] [CrossRef]
- Parashar, P.; Tseng, Y.-H.; Lin, Z.-H. Self-Powered Wearable Pressure Sensor System for Smart Healthcare Applications. Meet. Abstr. 2024, MA2024-01, 1625. [Google Scholar] [CrossRef]
- Lai, Y.; Ginnaram, S.; Lin, S.; Hsu, F.; Lu, T.; Lu, M. Breathable and Stretchable Multifunctional Triboelectric Liquid-Metal E-Skin for Recovering Electromagnetic Pollution, Extracting Biomechanical Energy, and as Whole-Body Epidermal Self-Powered Sensors. Adv. Funct. Mater. 2024, 34, 2312443. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Xia, Y.; Zhu, Y.; Zhu, S.; Jia, C.; Guo, W.; Li, Q.; Yan, Z. Stretchable Freezing-Tolerant Triboelectric Nanogenerator and Strain Sensor Based on Transparent, Long-Term Stable, and Highly Conductive Gelatin-Based Organohydrogel. Nano Energy 2022, 95, 106967. [Google Scholar] [CrossRef]
- Gao, N.; Xu, G.; Chang, G.; Wu, Y. From Lab to Life: Self-Powered Sweat Sensors and Their Future in Personal Health Monitoring. Adv. Sci. 2025, 12, 2409178. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.Y.; Choi, H.S.; Cho, J.; Kim, H.S.; Mo, J.E.; Kim, J.; Yoon, T.K.; Hur, S.H.; Kim, J.J.; et al. Advancing Humidity-Resistant Triboelectric Nanogenerators Through MoS2-Encapsulated SiO2 Nanoparticles for Self-Powered Gas Sensing Applications. Adv. Energy Mater. 2025, 15, 2405278. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Li, T.; Xu, H.; Wu, H.; Su, Z. Respiration-Driven Ammonia Sensing Mask for Multifunctional Self-Powered Monitoring Application. Chem. Eng. J. 2025, 507, 160598. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef]
- Ma, G.; Li, B.; Niu, S.; Zhang, J.; Wang, D.; Wang, Z.; Zhou, L.; Liu, Q.; Liu, L.; Wang, J.; et al. A Bioinspired Triboelectric Nanogenerator for All State Energy Harvester and Self-Powered Rotating Monitor. Nano Energy 2022, 91, 106637. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D.; Peng, X.; Yi, J.; Ning, C.; Cheng, R.; Yu, P.; et al. Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin-Like Highly Sensitive Self-Powered Haptic Sensors. Adv. Funct. Mater. 2021, 31, 2005584. [Google Scholar] [CrossRef]
- Wang, L.; Fei, Z.; Wu, Z.; Ye, Y.; Qi, Y.; Wang, J.; Zhao, L.; Zhang, C.; Zhang, Y.; Qin, G.; et al. Wearable Bending Wireless Sensing with Autonomous Wake-up by Piezoelectric and Triboelectric Hybrid Nanogenerator. Nano Energy 2023, 112, 108504. [Google Scholar] [CrossRef]
- Sun, S.; Hao, S.; Liu, Y.; Sun, S.; Xu, Y.; Jiang, M.; Shao, C.; Wen, J.; Sun, R. Mechanically Resilient, Self-Healing, and Environmentally Adaptable Eutectogel-Based Triboelectric Nanogenerators for All-Weather Energy Harvesting and Human–Machine Interaction. ACS Nano 2025, 19, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zheng, S.; Tan, J.; Cheng, J.; Cai, J.; Xu, Z.; E, S. An Integrated Charge Excitation Alternative Current Dielectric Elastomer Generator for Joint Motion Energy Harvesting. Adv. Mater. Technol. 2024, 9, 2301172. [Google Scholar] [CrossRef]
- Zhao, X.; Xiong, Z.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J.; Bian, J. Robust and Flexible Wearable Generator Driven by Water Evaporation for Sustainable and Portable Self-Power Supply. Chem. Eng. J. 2022, 434, 134671. [Google Scholar] [CrossRef]
- Wang, C.; Qu, X.; Zheng, Q.; Liu, Y.; Tan, P.; Shi, B.; Ouyang, H.; Chao, S.; Zou, Y.; Zhao, C.; et al. Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano 2021, 15, 10130–10140. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Lin, Y.; Jiang, Z.; Liu, Y.; Zhou, L.; Liu, Z.; Tang, L.; Yang, B. Recent Advances in Triboelectric Materials for Active Health Applications. Electron. Mater. 2025, 6, 16. https://doi.org/10.3390/electronicmat6040016
Peng C, Lin Y, Jiang Z, Liu Y, Zhou L, Liu Z, Tang L, Yang B. Recent Advances in Triboelectric Materials for Active Health Applications. Electronic Materials. 2025; 6(4):16. https://doi.org/10.3390/electronicmat6040016
Chicago/Turabian StylePeng, Chang, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang, and Bao Yang. 2025. "Recent Advances in Triboelectric Materials for Active Health Applications" Electronic Materials 6, no. 4: 16. https://doi.org/10.3390/electronicmat6040016
APA StylePeng, C., Lin, Y., Jiang, Z., Liu, Y., Zhou, L., Liu, Z., Tang, L., & Yang, B. (2025). Recent Advances in Triboelectric Materials for Active Health Applications. Electronic Materials, 6(4), 16. https://doi.org/10.3390/electronicmat6040016

