Boosted Nonlinear Optical Properties of Polypyrrole Nanoplates Covered with Graphene Layers
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Material Characterizations
3.2. Nonlinear Absorption Characteristics
3.3. Passively SA Mode-Locked Laser
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, B.; Scardaci, V. Metal-based nanomaterials: Fabrications, optical properties, and ultrafast photonics. Nanomaterials 2025, 15, 186. [Google Scholar] [CrossRef]
- Wu, X.Z.; Guo, Y.N.; Zhang, Q.Z.; Ye, Y.; Wang, Q.L.; Zhao, Y.; Zheng, Y.; Zheng, Z.Q.; Tao, L.L. CVD-grown one-dimensional and two-dimensional Sb2Se3 semiconductor nanomaterials for ultrafast fiber laser generation. ACS Appl. Nano Mater. 2024, 7, 28296–28305. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, B.L.; Tan, Y.; Zhang, W.; Fan, Y.; Kalimuthu, R.; Bhat, A.A.; Yang, Y.; Xu, S.L.; Zhang, H.M.; et al. Heterojunctions based on 2D materials for pulse laser applications. ACS Nano 2024, 19, 12646–12679. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.X.; Cheng, H.R.; Xu, L.J.; Fu, B.; Liu, X.H.; Zhang, H. Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics. ACS Photonics 2023, 10, 3133–3142. [Google Scholar] [CrossRef]
- Rafailov, E.U.; Cataluna, M.A.; Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photon. 2007, 1, 395–401. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.Y.; Yang, S.; Wang, J.J.; Li, L.; Bai, Z.X.; Wang, Y.L.; Lv, Z.W. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Lin, A.O.; Zhang, Z.Y.; Li, Z.Y.; Peng, P.C.; Song, Y.F.; Zhang, H. Abundant dynamics of group velocity locked vector solitons from Er-doped fiber laser based on GO/PVA film. Nanophotonics 2022, 11, 4831–4841. [Google Scholar] [CrossRef]
- Chougle, A.; Rezk, A.; Bin Afzal, S.U.; Mohammed, A.K.; Shetty, D.; Nayfeh, A. Evolving role of conjugated polymers in nanoelectronics and photonics. Nano-Micro Lett. 2025, 17, 230. [Google Scholar] [CrossRef]
- Ali, H.; Orooji, Y.; Alzahrani, A.Y.A.; AL Mughram, M.H.; Abu-Dief, A.M.; Omar, I.; Hayat, A.; Yue, D.W.; Xu, Y.S. Innovative morphological modifications of porous organic polymers for advanced photocatalytic applications. Coord. Chem. Rev. 2025, 543, 216884. [Google Scholar] [CrossRef]
- Kyhoiesh, H.A.K.; Salem, K.H.; Waheeb, A.S.; Hanoon, T.M.; Jabbar, A.F.; Elnaggar, A.Y.; El Azab, I.H.; Mahmoud, M.H.H.; Al-Kubaisi, A.A. A machine learning-DFT assisted structural screening for efficient polymer donors for their potential photovoltaic material applications. Mater. Chem. Phys. 2025, 345, 131210. [Google Scholar] [CrossRef]
- Balraj, B.; Raja, M.; Prabhu, T.G.V.; Balaji, M.; Chandrasekaran, J.; Nagarajan, S.K.; Bharathi, M.; Lee, S.; Sivakumar, C. A critical review on decade progress and future prospects of P3HT:PCBM bulk heterojunction solar cells. Sol. Eenery 2025, 297, 113574. [Google Scholar] [CrossRef]
- Alrowaily, A.W.; Alotaibi, B.M.; Atta, A.; Abdeltwab, E.; Abdelhamied, M.M. Structural and linear/nonlinear optical characteristics of flexible polypyrrole/CuO polymeric composite films. Int. J. Mod. Phy. B 2024, 39, 15. [Google Scholar] [CrossRef]
- Wang, A.; Cheng, L.; Chen, X.; Li, C.; Zhang, J.; Zhu, W. Efficient optical limiting of polypyrrole ternary nanohybrids co-functionalized with peripherally substituted porphyrins and axially coordinated metal-porphyrins. Dalton Trans. 2019, 48, 14467–14477. [Google Scholar] [CrossRef]
- Sun, Y.P.; Xu, W.J.; Lang, F.F.; Wang, H.R.; Pan, F.F.; Hou, H.W. Transformation of SBUs and synergy of MOF host-guest in single crystalline state: Ingenious strategies for modulating third-order NLO signals. Small 2024, 20, 4. [Google Scholar] [CrossRef]
- Ahmad, H.; Faruki, M.J.; Jasim, A.A.; Ooi, S.I.; Thambiratnam, K. Poly (N-vinyl Carbazole)—Polypyrrole/graphene oxide nanocomposite material on tapered fiber for Q-switched pulse generation. Opt. Laser Technol. 2018, 99, 184–190. [Google Scholar] [CrossRef]
- Paul, S.; Karthikeyan, B. Charge transfer induced linear and nonlinear optical properties in polypyrrole/ZnO@MoS2 ternary composites. J. Appl. Phys. 2024, 135, 133103. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhao, W.; Yu, W. Effect of acid/base on the third-order optical nonlinearity of polypyrrole. J. Mol. Struct. 2015, 1099, 291–296. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, J.; Qin, F.F.; Chen, D.; Wang, X. Optical properties of graphene/ZnO spheres/Au heterostructure for enhanced van der Waals saturable absorbers. J. Alloys Comp. 2022, 928, 167221. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.W.; Zhang, F.; Saito, K.; Nishio, M.; Guo, Q.X. Temperature dependence of Raman scattering in β-(AlGa)2O3 thin films. AIP Adv. 2016, 6, 015111. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.W.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q.X. Temperature-dependent Raman scattering in cubic (InGa)2O3 thin films. J. Alloys Comp. 2017, 690, 287–292. [Google Scholar] [CrossRef]
- Xia, Y.Y.; Xiao, H.P. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. J. Raman Spectrosc. 2012, 43, 469–473. [Google Scholar] [CrossRef]
- Czaja, T.; Wojcik, K.; Grzeszczuk, M.; Szostak, R. Polypyrrole-methyl orange Raman pH sensor. Polymers 2019, 11, 715. [Google Scholar] [CrossRef]
- Setka, M.; Calavia, R.; Vojkuvka, L.; Llobek, E.; Drbohlavova, J.; Vallejos, S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019, 9, 8465. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Barnabe, S.; Loranger, E. Synthesis, formulation, and characterization of a bio-based paint derived from TOCN and polypyrrole. Prog. Org. Coat. 2025, 208, 109511. [Google Scholar] [CrossRef]
- Lim, Y.S.; Lim, H.N.; Lim, S.P.; Huang, N.M. Catalyst-assisted electrochemical deposition of graphene decorated polypyrrole nanoparticles film for high-performance supercapacitor. RSC Adv. 2014, 4, 56445–56454. [Google Scholar] [CrossRef]
- Han, Y.Q.; Wang, T.Q.; Li, T.X.; Gao, X.X.; Li, W.; Zhang, Z.L.; Wang, Y.M.; Zhang, X.G. Preparation and electrochemical performances of graphene/polypyrrole nanocomposite with anthraquinone-graphene oxide as active oxidant. Carbon 2017, 117, 111–118. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, Y.; Zhao, W.; Yu, X.; Sun, Z.; Cheng, X.; Yu, X.; Zhang, Y.; Wang, Q. Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. Opt. Express 2014, 22, 17227–17235. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Shi, Z.; An, M.; Chen, E.; Feng, J.; Wang, Q. β-In2S3 nanoplates for ultrafast photonics. ACS Appl. Nano Mater. 2022, 5, 3229–3236. [Google Scholar] [CrossRef]
- Hui, Z.; Wu, A.; Han, D.; Li, T.; Li, L.; Gong, J.; Li, X. Switchable single-to multiwavelength conventional soliton and bound-state soliton generated from a NbTe2 saturable absorber based passive mode-locked erbium-doped fiber laser. ACS Appl. Mater. Interfaces 2024, 16, 22344–22360. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, L.; Xie, L.; Qin, F.; Wang, X. Boosted Nonlinear Optical Properties of Polypyrrole Nanoplates Covered with Graphene Layers. Electron. Mater. 2025, 6, 12. https://doi.org/10.3390/electronicmat6030012
Zhang Z, Wang L, Xie L, Qin F, Wang X. Boosted Nonlinear Optical Properties of Polypyrrole Nanoplates Covered with Graphene Layers. Electronic Materials. 2025; 6(3):12. https://doi.org/10.3390/electronicmat6030012
Chicago/Turabian StyleZhang, Zeyu, Lingdong Wang, Lili Xie, Feifei Qin, and Xu Wang. 2025. "Boosted Nonlinear Optical Properties of Polypyrrole Nanoplates Covered with Graphene Layers" Electronic Materials 6, no. 3: 12. https://doi.org/10.3390/electronicmat6030012
APA StyleZhang, Z., Wang, L., Xie, L., Qin, F., & Wang, X. (2025). Boosted Nonlinear Optical Properties of Polypyrrole Nanoplates Covered with Graphene Layers. Electronic Materials, 6(3), 12. https://doi.org/10.3390/electronicmat6030012