Obesity Is Associated with Larger Thyroid Nodules but Not with Malignant Cytology
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Clinical and Laboratory Assessment
2.3. Ultrasound Evaluation and FNAB Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dean, D.S.; Gharib, H. Epidemiology of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef]
- Grussendorf, M.; Ruschenburg, I.; Brabant, G. Malignancy rates in thyroid nodules: A long-term cohort study of 17,592 patients. Eur. Thyroid J. 2022, 11, e220027. [Google Scholar] [CrossRef]
- Lortet-Tieulent, J.; Franceschi, S.; Dal Maso, L.; Vaccarella, S. Thyroid cancer “epidemic” also occurs in low- and middle-income countries. Int. J. Cancer 2019, 144, 2082–2087. [Google Scholar] [CrossRef]
- Giuliano, S.; Mirabelli, M.; Chiefari, E.; Vergine, M.; Gervasi, R.; Brunetti, F.S.; Innaro, N.; Donato, G.; Aversa, A.; Brunetti, A. Malignancy Analyses of Thyroid Nodules in Patients Subjected to Surgery with Cytological- and Ultrasound-Based Risk Stratification Systems. Endocrines 2020, 1, 102–118. [Google Scholar] [CrossRef]
- Durante, C.; Costante, G.; Lucisano, G.; Bruno, R.; Meringolo, D.; Paciaroni, A.; Puxeddu, E.; Torlontano, M.; Tumino, S.; Attard, M.; et al. The natural history of benign thyroid nodules. JAMA 2015, 313, 926–935. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Pasqual, E.; O’Brien, K.; Rinaldi, S.; Sandler, D.P.; Kitahara, C.M. Obesity, obesity-related metabolic conditions, and risk of thyroid cancer in women: Results from a prospective cohort study (Sister Study). Lancet Reg. Health Am. 2023, 23, 10053. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; McCullough, M.L.; Franceschi, S.; Rinaldi, S.; Wolk, A.; Neta, G.; Olov Adami, H.; Anderson, K.; Andreotti, G.; Beane Freeman, L.E.; et al. Anthropometric Factors and Thyroid Cancer Risk by Histological Subtype: Pooled Analysis of 22 Prospective Studies. Thyroid 2016, 26, 306–318. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer--Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef]
- Shin, A.; Cho, S.; Jang, D.; Abe, S.K.; Saito, E.; Rahman, M.S.; Islam, M.R.; Sawada, N.; Shu, X.O.; Koh, W.P.; et al. Body Mass Index and Thyroid Cancer Risk: A Pooled Analysis of Half a Million Men and Women in the Asia Cohort Consortium. Thyroid 2022, 32, 306–314. [Google Scholar] [CrossRef]
- Laaksonen, M.A.; MacInnis, R.J.; Canfell, K.; Shaw, J.E.; Magliano, D.J.; Banks, E.; Giles, G.G.; Byles, J.E.; Gill, T.K.; Mitchell, P.; et al. Thyroid cancers potentially preventable by reducing overweight and obesity in Australia: A pooled cohort study. Int. J. Cancer 2022, 150, 1281–1290. [Google Scholar] [CrossRef]
- Tang, Y.; Yan, T.; Wang, G.; Chen, Y.; Zhu, Y.; Jiang, Z.; Yang, M.; Li, C.; Li, Z.; Yu, P.; et al. Correlation between Insulin Resistance and Thyroid Nodule in Type 2 Diabetes Mellitus. Int. J. Endocrinol. 2017, 2017, 1617458. [Google Scholar] [CrossRef]
- Iribarren, C.; Haselkorn, T.; Tekawa, I.S.; Friedman, G.D. Cohort study of thyroid cancer in a San Francisco Bay area population. Int. J. Cancer 2001, 93, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Castagna, M.G.; Cappelli, C.; Ciuoli, C.; Coperchini, F.; Chiofalo, F.; Maino, F.; Palmitesta, P.; Chiovato, L.; Pacini, F. Obesity Does Not Modify the Risk of Differentiated Thyroid Cancer in a Cytological Series of Thyroid Nodules. Eur. Thyroid J. 2016, 5, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Pappa, T.; Kang, A.S.; Coleman, A.K.; Landa, I.; Marqusee, E.; Kim, M.; Angell, T.E.; Alexander, E.K. Point of Care Measurement of Body Mass Index and Thyroid Nodule Malignancy Risk Assessment. Front. Endocrinol. 2022, 13, 824226. [Google Scholar] [CrossRef]
- Samanic, C.; Chow, W.H.; Gridley, G.; Jarvholm, B.; Fraumeni, J.F., Jr. Relation of body mass index to cancer risk in 362,552 Swedish men. Cancer Causes Control 2006, 17, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Rapp, K.; Schroeder, J.; Klenk, J.; Stoehr, S.; Ulmer, H.; Concin, H.; Diem, G.; Oberaigner, W.; Weiland, S.K. Obesity and incidence of cancer: A large cohort study of over 145,000 adults in Austria. Br. J. Cancer 2005, 93, 1062–1067. [Google Scholar] [CrossRef]
- Belfiore, A.; La Rosa, G.L.; La Porta, G.A.; Giuffrida, D.; Milazzo, G.; Lupo, L.; Regalbuto, C.; Vigneri, R. Cancer risk in patients with cold thyroid nodules: Relevance of iodine intake, sex, age, and multinodularity. Am. J. Med. 1992, 93, 363–369. [Google Scholar] [CrossRef]
- Costante, G.; Grasso, L.; Schifino, E.; Marasco, M.F.; Crocetti, U.; Capula, C.; Chiarella, R.; Ludovico, O.; Nocera, M.; Parlato, G.; et al. Iodine deficiency in Calabria: Characterization of endemic goiter and analysis of different indicators of iodine status region-wide. J. Endocrinol. Investig. 2002, 25, 201–207. [Google Scholar] [CrossRef]
- Giordano, C.; Barone, I.; Marsico, S.; Bruno, R.; Bonofiglio, D.; Catalano, S.; Andò, S. Endemic Goiter and Iodine Prophylaxis in Calabria, a Region of Southern Italy: Past and Present. Nutrients 2019, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.; Andò, S.; Bagnasco, M.; Meringolo, D.; Mian, C.; Moleti, M.; Puxeddu, E.; Regalbuto, C.; Taccaliti, A.; Tanda, M.L.; et al. The iodine nutritional status in the Italian population: Data from the Italian National Observatory for Monitoring Iodine Prophylaxis (OSNAMI) (period 2015–2019). Am. J. Clin. Nutr. 2019, 110, 1265–1266. [Google Scholar] [CrossRef]
- Chiefari, E.; Innaro, N.; Gervasi, R.; Mirabelli, M.; Giuliano, S.; Donnici, A.; Obiso, S.; Brunetti, F.S.; Foti, D.P.; Brunetti, A. Incidental thyroid carcinoma in an endemic goiter area in Italy: Histopathological features and predictors of a common finding. Endocrine 2024, 84, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Italian Thyroid Cancer Observatory (ITCO). Thyroid Cancer Monitor—First ITCO Report 2025. Available online: https://issuu.com/raffaelecreativagroupcom/docs/report_itco_agg13-2-2025 (accessed on 10 August 2025).
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Orlandi, F.; Palombini, L.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 August 2025).
- Donnici, A.; Mirabelli, M.; Giuliano, S.; Misiti, R.; Tocci, V.; Greco, M.; Aiello, V.; Brunetti, F.S.; Chiefari, E.; Aversa, A.; et al. Coexistence of Hashimoto’s Thyroiditis in Differentiated Thyroid Cancer: Post-Operative Monitoring of Anti-Thyroglobulin Antibodies and Assessment of Treatment Response. Diagnostics 2024, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Tripolino, O.; Mirabelli, M.; Misiti, R.; Torchia, A.; Casella, D.; Dragone, F.; Chiefari, E.; Greco, M.; Brunetti, A.; Foti, D.P. Circulating Autoantibodies in Adults with Hashimoto’s Thyroiditis: New Insights from a Single-Center, Cross-Sectional Study. Diagnostics 2024, 14, 2450. [Google Scholar] [CrossRef]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- Gao, L.; Ma, B.; Zhou, L.; Wang, Y.; Yang, S.; Qu, N.; Gao, Y.; Ji, Q. The impact of presence of Hashimoto’s thyroiditis on diagnostic accuracy of ultrasound-guided fine-needle aspiration biopsy in subcentimeter thyroid nodules: A retrospective study from FUSCC. Cancer Med. 2017, 6, 1014–1022. [Google Scholar] [CrossRef]
- Donfrancesco, C.; Profumo, E.; Lo Noce, C.; Minutoli, D.; Di Lonardo, A.; Buttari, B.; Vespasiano, F.; Vannucchi, S.; Galletti, F.; Onder, G.; et al. Trends of overweight, obesity and anthropometric measurements among the adult population in Italy: The CUORE Project health examination surveys 1998, 2008, and 2018. PLoS ONE 2022, 17, e0264778. [Google Scholar] [CrossRef]
- Giovanella, L.; D’Aurizio, F.; Campenni’, A.; Ruggeri, R.M.; Baldari, S.; Verburg, F.A.; Trimboli, P.; Ceriani, L. Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine deficient regions. Endocrine 2016, 54, 757–761. [Google Scholar] [CrossRef]
- Banu, K.S.; Govindarajulu, P.; Aruldhas, M.M. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr. Pathol. 2001, 12, 315–327. [Google Scholar] [CrossRef]
- Tsatsoulis, A. The Role of Insulin Resistance/Hyperinsulinism on the Rising Trend of Thyroid and Adrenal Nodular Disease in the Current Environment. J. Clin. Med. 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Gallo, M.; Ruggeri, R.M.; Giacinto, P.D.; Sesti, F.; Prinzi, N.; Adinolfi, V.; Barucca, V.; Renzelli, V.; Muscogiuri, G.; et al. Nutritional status and follicular-derived thyroid cancer: An update. Crit. Rev. Food Sci. Nutr. 2021, 61, 25–59. [Google Scholar] [CrossRef]
- Biondi, B.; Filetti, S.; Schlumberger, M. Thyroid-hormone therapy and thyroid cancer: A reassessment. Nat. Clin. Pract. Endocrinol. Metab. 2005, 1, 32–40. [Google Scholar] [CrossRef]
- Biondi, B. Subclinical Hypothyroidism in Patients with Obesity and Metabolic Syndrome: A Narrative Review. Nutrients 2023, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Moretti, F.; Nanni, S.; Pontecorvi, A. Molecular pathogenesis of thyroid nodules and cancer. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 2000, 14, 517–539. [Google Scholar] [CrossRef] [PubMed]
- Leite-Almeida, L.; Silva, R.S.; Vicente-Ferreira, M.; Costa, C.; Estevinho, N.; Castro-Correia, C.; Ferreira, S.; Bom-Sucesso, M. Age-related characteristics in differentiated thyroid cancer: A 20-year single-center retrospective analysis in pediatric and adolescent patients. Arch. Endocrinol. Metab. 2025, 69, e240333. [Google Scholar] [CrossRef]
- Ringel, M.D.; Sosa, J.A.; Baloch, Z.; Bischoff, L.; Bloom, G.; Brent, G.A.; Brock, P.L.; Chou, R.; Flavell, R.R.; Goldner, W.; et al. 2025 American Thyroid Association Management Guidelines for Adult Patients with Differentiated Thyroid Cancer. Thyroid 2025, 35, 841–985. [Google Scholar] [CrossRef]
| Patient Characteristics | Non-Obese (n = 840) | Obese (n = 352) | p Value |
|---|---|---|---|
| Age, years | 55.0 (44.0–65.0) | 57.5 (49.0–65.0) | 0.021 |
| Female sex, n | 616 (73.3%) | 251 (71.3%) | 0.474 |
| Weight, Kg | 67 (60–75) | 89 (80–100) | <0.001 |
| Height, m | 1.64 (1.60–1.70) | 1.62 (1.56–1.69) | <0.001 |
| BMI, Kg/m2 | 25.0 (22.9–27.2) | 33.2 (31.2–36.6) | <0.001 |
| Family history of thyroid cancer, n | 54 (6.4%) | 22 (6.3%) | 0.908 |
| Levothyroxine use, n | 124 (14.8%) | 60 (17.0%) | 0.269 |
| TSH, mU/L | 1.200 (0.795–1.805) | 1.380 (0.900–2.070) | 0.007 |
| FT3, pg/mL | 3.29 (2.96–3.60) | 3.29 (2.92–3.63) | 0.980 |
| FT4, ng/mL | 1.16 (1.00–1.35) | 1.17 (1.01–1.40) | 0.395 |
| Positive anti-TPO, n | 68 (8.1%) | 88 (25.0%) | 0.481 |
| Positive anti-Tg, n | 19 (2.3%) | 8 (2.3%) | 0.871 |
| Thyroid Nodule: Ultrasound Characteristics | Non-Obese (n = 840) | Obese (n = 352) | p Value |
|---|---|---|---|
| Anteroposterior diameter, mm | 13.0 (9.6–17.9) | 14.0 (10.4–19.0) | 0.007 |
| Transverse diameter, mm) | 16.5 (12.3–22.7) | 17.7 (13.0–24.1) | 0.009 |
| Longitudinal diameter, mm | 19.4 (14.1–26.2) | 20.1 (14.8–27.4) | 0.145 |
| Nodule volume, mm3 | 2100 (863–5228) | 2723 (1010–6523) | 0.014 |
| Nodule in right lobe, n | 444 (52.9%) | 159 (45.2%) | 0.086 |
| Nodule in left lobe, n | 357 (42.5%) | 170 (48.3%) | |
| Isthmic nodule, n | 31 (3.7%) | 19 (5.4%) | |
| Uncommon or unknown nodule location *, n | 8 (0.9%) | 4 (1.1%) | |
| Microcalcifications, n | 143 (17.0%) | 39 (11.1%) | 0.009 |
| Markedly hypoechoic, n | 245 (34.9%) | 110 (36.1%) | 0.995 |
| Hypoechoic, n | 314 (44.7%) | 134 (43.9%) | |
| Isoechoic, n | 135 (16.1%) | 57 (18.7%) | |
| Hyperechoic, n | 2 (0.3%) | 1 (0.3%) | |
| Mixed echogenicity, n | 6 (0.9%) | 3 (1.0%) | |
| Avascular lesion, n | 240 (28.6%) | 120 (34.1%) | 0.058 |
| Ill-defined or irregular margins, n | 72 (17.0%) | 31 (20.5%) | 0.334 |
| Chronic autoimmune thyroiditis, n | 89 (10.6%) | 43 (12.2%) | 0.702 |
| Thyroid Nodule: Cytological Category | Non-Obese (n = 840) | Obese (n = 352) | p Value |
|---|---|---|---|
| TIR 1, n | 90 (10.7%) | 43 (12.2%) | 0.453 |
| TIR 2, n | 568 (67.6%) | 234 (66.5%) | 0.701 |
| TIR 3A, n | 103 (12.3%) | 42 (11.9%) | 0.873 |
| TIR 3B, n | 39 (4.6%) | 21 (6.0%) | 0.908 |
| TIR 4, n | 28 (3.3%) | 11 (3.1%) | 0.853 |
| TIR 5, n | 12 (1.4%) | 1 (0.3%) | 0.082 |
| Total high-risk cytological categories (≥TIR 3B) * | 79 (9.4%) | 33 (9.4%) | 0.987 |
| Parameter | Standardized Estimate | Odds Ratio | Lower Bound 95% CI | Upper Bound 95%CI | p Value |
|---|---|---|---|---|---|
| Age, years | −0.661 | 0.951 | 0.926 | 0.977 | <0.001 |
| TSH, mU/L | −0.029 | 0.980 | 0.756 | 1.270 | 0.878 |
| BMI, Kg/m2 | −0.067 | 0.988 | 0.922 | 1.058 | 0.723 |
| Levothyroxine use | 0.069 | 2.099 | 0.750 | 5.877 | 0.158 |
| Positive anti-TPO | 0.742 | 1.142 | 0.468 | 2.789 | 0.771 |
| Nodule volume, mm3 | 0.060 | 1.000 | 1.000 | 1.000 | 0.740 |
| Male sex | 0.558 | 1.747 | 0.790 | 3.861 | 0.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliano, S.; Seminara, G.; Iuliano, S.; Obiso, S.; Chiefari, E.; Foti, D.P.; Mirabelli, M.; Brunetti, A. Obesity Is Associated with Larger Thyroid Nodules but Not with Malignant Cytology. Endocrines 2025, 6, 50. https://doi.org/10.3390/endocrines6040050
Giuliano S, Seminara G, Iuliano S, Obiso S, Chiefari E, Foti DP, Mirabelli M, Brunetti A. Obesity Is Associated with Larger Thyroid Nodules but Not with Malignant Cytology. Endocrines. 2025; 6(4):50. https://doi.org/10.3390/endocrines6040050
Chicago/Turabian StyleGiuliano, Stefania, Giuseppe Seminara, Stefano Iuliano, Stefania Obiso, Eusebio Chiefari, Daniela P. Foti, Maria Mirabelli, and Antonio Brunetti. 2025. "Obesity Is Associated with Larger Thyroid Nodules but Not with Malignant Cytology" Endocrines 6, no. 4: 50. https://doi.org/10.3390/endocrines6040050
APA StyleGiuliano, S., Seminara, G., Iuliano, S., Obiso, S., Chiefari, E., Foti, D. P., Mirabelli, M., & Brunetti, A. (2025). Obesity Is Associated with Larger Thyroid Nodules but Not with Malignant Cytology. Endocrines, 6(4), 50. https://doi.org/10.3390/endocrines6040050

