Genetics of Thyroid Disorders
Abstract
:1. Thyroid Anatomy, Embryology, and Physiology
1.1. Thyroid Anatomy and Physiology
- Basal metabolic rate by stimulating Na+/K+ ATPase activity resulting in increasing body temperature, respiratory rate (RR), and oxygen consumption
- lipolysis, gluconeogenesis, glycogenolysis
- neuronal differentiation, synapse development, myelination in the prenatal and newborn periods, regulating neurodevelopment
- brain maturation: coordination, gait
- psychiatric function: intellectual development
- growth and pubertal development
- beta 1-adrenoreceptor stimulation in the heart for control of heart rate (HR), cardiac output (CO), contractility, and stroke volume [1]
1.2. Thyroid Embryology
2. Laboratory
3. Imaging
4. Congenital Disorders
4.1. Congenital Hypothyroidism
Treatment
4.2. Congenital Hyperthyroidism
5. Acquired Disorders
5.1. Primary Hypothyroidism
5.2. Hyperthyroidism
Graves’ Disease
6. Goiter
7. Thyroid Nodules
- Nondiagnostic or unsatisfactory (specimen with limited cellularity: fewer than six follicular cell groups each containing 10–15 cells per group from at least two separate aspirates; absence of follicular cells or poor fixation and preservation
- Benign
- atypia of undetermined significance (AUS) or follicular lesion of undetermined significance (FLUS)
- follicular/Hurthle neoplasm or suspicious for a follicular/Hurthle neoplasm
- suspicious for malignancy
- malignant [59]
Thyroid Cancer
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, M.; Asuka, E.; Fingeret, A. Physiology, Thyroid Function. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Pirahanchi, Y.; Tariq, M.A.; Jialal, I. Physiology, Thyroid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Mariotti, S.; Beck-Peccoz, P. Physiology of the Hypothalamic-Pituitary-Thyroid Axis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Hernandez, A.; St Germain, D.L. Thyroid hormone deiodinases: Physiology and clinical disorders. Curr. Opin. Pediatr. 2003, 15, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Sperling, M.A.V.G.V.; Deladoey, J. Pediatric Endocrinology. Disorders of the Thyroid in the Newborn and Infant; Elsevier: Philadelphia, PA, USA, 2014. [Google Scholar]
- Eng, L.; Lam, L. Thyroid Function During the Fetal and Neonatal Periods. Neoreviews 2020, 21, e30–e36. [Google Scholar] [CrossRef] [PubMed]
- Sterrett, M. Maternal and Fetal Thyroid Physiology. Clin. Obstet. Gynecol. 2019, 62, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Burrow, G.N.; Fisher, D.A.; Larsen, P.R. Maternal and fetal thyroid function. N. Engl. J. Med. 1994, 331, 1072–1078. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J. Action of thyroid hormone in brain. J. Endocrinol. Investig. 2002, 25, 268–288. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Rovet, J. Timing of thyroid hormone action in the developing brain: Clinical observations and experimental findings. J. Neuroendocrinol. 2004, 16, 809–818. [Google Scholar] [CrossRef]
- Braun, D.; Schweizer, U. Thyroid Hormone Transport and Transporters. Vitam. Horm. 2018, 106, 19–44. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef]
- Weiner, A.; Oberfield, S.; Vuguin, P. The Laboratory Features of Congenital Hypothyroidism and Approach to Therapy. Neoreviews 2020, 21, e37–e44. [Google Scholar] [CrossRef]
- American Academy of Pediatrics; Susan, R.; Rose, M.D.; The Section on Endocrinology and Committee on Genetics; American Thyroid Association; Rosalind, S.; Brown, M.D.; The Public Health Committee; Lawson Wilkins Pediatric Endocrine Society. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006, 117, 2290–2303. [Google Scholar] [CrossRef] [Green Version]
- Kahaly, G.J.; Bartalena, L.; Hegedus, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. 2018 European Thyroid Association Guideline for the Management of Graves’ Hyperthyroidism. Eur. Thyroid J. 2018, 7, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Clerc, J. Imaging the thyroid in children. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 203–220. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Lee, Y.S.; Yu, J. Thyroid imaging study in children with suspected thyroid dysgenesis. Ann. Pediatr. Endocrinol. Metab. 2021, 26, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Wong, K.K.; Gross, M.D.; Avram, A.M. Lingual Thyroid Ectopia: Diagnostic SPECT/CT Imaging and Radioactive Iodine Treatment. Thyroid 2016, 26, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Ozon, A.; Tekin, N.; Siklar, Z.; Gulcan, H.; Kara, C.; Tastekin, A.; Demir, K.; Koc, E.; Evliyaoglu, O.; Kurtoglu, S. Neonatal effects of thyroid diseases in pregnancy and approach to the infant with increased TSH: Turkish Neonatal and Pediatric Endocrinology and Diabetes Societies consensus report. Turk. Arch. Pediatrics/Türk Pediatri Arşivi 2018, 53, S209–S223. [Google Scholar] [CrossRef] [PubMed]
- Van Trotsenburg, A.S.P. Management of neonates born to mothers with thyroid dysfunction, and points for attention during pregnancy. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101437. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, N.; Yamada, Y.; Nohara, Y.; Konishi, J.; Kasagi, K.; Endo, K.; Kojima, H.; Wataya, K. Familial neonatal transient hypothyroidism due to maternal TSH-binding inhibitor immunoglobulins. N. Engl. J. Med. 1980, 303, 738–741. [Google Scholar] [CrossRef]
- Brown, R.S.; Bellisario, R.L.; Mitchell, E.; Keating, P.; Botero, D. Detection of thyrotropin binding inhibitory activity in neonatal blood spots. J. Clin. Endocrinol. Metab. 1993, 77, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Grasberger, H.; Refetoff, S. Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr. Opin. Pediatr. 2011, 23, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Zdraveska, N.; Kocova, M.; Nicholas, A.K.; Anastasovska, V.; Schoenmakers, N. Genetics of Gland-in-situ or Hypoplastic Congenital Hypothyroidism in Macedonia. Front. Endocrinol. 2020, 11, 413. [Google Scholar] [CrossRef]
- Castanet, M.; Polak, M.; Bonaiti-Pellie, C.; Lyonnet, S.; Czernichow, P.; Leger, J.; Afdphe. Nineteen years of national screening for congenital hypothyroidism: Familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J. Clin. Endocrinol. Metab. 2001, 86, 2009–2014. [Google Scholar] [CrossRef]
- Senee, V.; Chelala, C.; Duchatelet, S.; Feng, D.; Blanc, H.; Cossec, J.C.; Charon, C.; Nicolino, M.; Boileau, P.; Cavener, D.R.; et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat. Genet. 2006, 38, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Dentice, M.; Cordeddu, V.; Rosica, A.; Ferrara, A.M.; Santarpia, L.; Salvatore, D.; Chiovato, L.; Perri, A.; Moschini, L.; Fazzini, C.; et al. Missense mutation in the transcription factor NKX2-5: A novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 2006, 91, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Hermanns, P.; Rodrigues, A.L.; Sousa, I.; Anselmo, J.; Bikker, H.; Cabral, R.; Pereira-Duarte, C.; Mota-Vieira, L.; Pohlenz, J. A new PAX8 mutation causing congenital hypothyroidism in three generations of a family is associated with abnormalities in the urogenital tract. Thyroid 2013, 23, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi-Odano, M.; Fujisawa, Y.; Ogata, T.; Nakashima, S.; Muramatsu, M.; Narumi, S. Identification and functional characterization of a novel PAX8 mutation (p.His39Pro) causing familial thyroid hypoplasia. Clin. Pediatr. Endocrinol. 2020, 29, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Vilain, C.; Rydlewski, C.; Duprez, L.; Heinrichs, C.; Abramowicz, M.; Malvaux, P.; Renneboog, B.; Parma, J.; Costagliola, S.; Vassart, G. Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation of PAX8. J. Clin. Endocrinol. Metab. 2001, 86, 234–238. [Google Scholar] [CrossRef]
- Cherella, C.E.; Wassner, A.J. Update on congenital hypothyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 63–69. [Google Scholar] [CrossRef]
- Vono-Toniolo, J.; Rivolta, C.M.; Targovnik, H.M.; Medeiros-Neto, G.; Kopp, P. Naturally occurring mutations in the thyroglobulin gene. Thyroid 2005, 15, 1021–1033. [Google Scholar] [CrossRef]
- Pohlenz, J.; Rosenthal, I.M.; Weiss, R.E.; Jhiang, S.M.; Burant, C.; Refetoff, S. Congenital hypothyroidism due to mutations in the sodium/iodide symporter. Identification of a nonsense mutation producing a downstream cryptic 3′ splice site. J. Clin. Investig. 1998, 101, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Ladsous, M.; Vlaeminck-Guillem, V.; Dumur, V.; Vincent, C.; Dubrulle, F.; Dhaenens, C.M.; Wémeau, J.L. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid 2014, 24, 639–648. [Google Scholar] [CrossRef]
- Rastogi, M.V.; LaFranchi, S.H. Congenital hypothyroidism. Orphanet J. Rare Dis. 2010, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzza, M.; Rabbiosi, S.; Vigone, M.C.; Zamproni, I.; Cirello, V.; Maffini, M.A.; Maruca, K.; Schoenmakers, N.; Beccaria, L.; Gallo, F.; et al. The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for DUOX2 defects. J. Clin. Endocrinol. Metab. 2014, 99, E544–E553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigone, M.C.; Fugazzola, L.; Zamproni, I.; Passoni, A.; Di Candia, S.; Chiumello, G.; Persani, L.; Weber, G. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum. Mutat. 2005, 26, 395. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.C.; Bikker, H.; Kempers, M.J.; van Trotsenburg, A.S.; Baas, F.; de Vijlder, J.J.; Vulsma, T.; Ris-Stalpers, C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N. Engl. J. Med. 2002, 347, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottcher, Y.; Paufler, T.; Stehr, T.; Bertschat, F.L.; Paschke, R.; Koch, C.A. Thyroid hormone resistance without mutations in thyroid hormone receptor beta. Med. Sci. Monit. 2007, 13, CS67–CS70. [Google Scholar] [CrossRef]
- Moran, C.; Agostini, M.; Visser, W.E.; Schoenmakers, E.; Schoenmakers, N.; Offiah, A.C.; Poole, K.; Rajanayagam, O.; Lyons, G.; Halsall, D.; et al. Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)alpha1 and TRalpha2: Clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol. 2014, 2, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Van Gucht, A.L.; Meima, M.E.; Zwaveling-Soonawala, N.; Visser, W.E.; Fliers, E.; Wennink, J.M.; Henny, C.; Visser, T.J.; Peeters, R.P.; van Trotsenburg, A.S. Resistance to Thyroid Hormone Alpha in an 18-Month-Old Girl: Clinical, Therapeutic, and Molecular Characteristics. Thyroid 2016, 26, 338–346. [Google Scholar] [CrossRef]
- Grijota-Martinez, C.; Barez-Lopez, S.; Gomez-Andres, D.; Guadano-Ferraz, A. MCT8 Deficiency: The Road to Therapies for a Rare Disease. Front. Neurosci. 2020, 14, 380. [Google Scholar] [CrossRef]
- Van Geest, F.S.; Gunhanlar, N.; Groeneweg, S.; Visser, W.E. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front. Endocrinol. 2021, 12, 723750. [Google Scholar] [CrossRef]
- Friesema, E.C.; Grueters, A.; Biebermann, H.; Krude, H.; von Moers, A.; Reeser, M.; Barrett, T.G.; Mancilla, E.E.; Svensson, J.; Kester, M.H.; et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004, 364, 1435–1437. [Google Scholar] [CrossRef]
- Huang, S.A.; Tu, H.M.; Harney, J.W.; Venihaki, M.; Butte, A.J.; Kozakewich, H.P.; Fishman, S.J.; Larsen, P.R. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N. Engl. J. Med. 2000, 343, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Katakami, H.; Kato, Y.; Inada, M.; Imura, H. Hypothalamic hypothyroidism due to isolated thyrotropin-releasing hormone (TRH) deficiency. J. Endocrinol. Investig. 1984, 7, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Niimi, H.; Inomata, H.; Sasaki, N.; Nakajima, H. Congenital isolated thyrotrophin releasing hormone deficiency. Arch. Dis. Child. 1982, 57, 877–878. [Google Scholar] [CrossRef]
- Yamada, M.; Radovick, S.; Wondisford, F.E.; Nakayama, Y.; Weintraub, B.D.; Wilber, J.F. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing hormone. Mol. Endocrinol. 1990, 4, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomi, M.; Busnelli, M.; Beck-Peccoz, P.; Costanzo, D.; Antonica, F.; Dolci, C.; Pilotta, A.; Buzi, F.; Persani, L. A family with complete resistance to thyrotropin-releasing hormone. N. Engl. J. Med. 2009, 360, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Persani, L.; Cangiano, B.; Bonomi, M. The diagnosis and management of central hypothyroidism in 2018. Endocr. Connect. 2019, 8, R44–R54. [Google Scholar] [CrossRef] [Green Version]
- Leger, J.; Olivieri, A.; Donaldson, M.; Torresani, T.; Krude, H.; van Vliet, G.; Polak, M.; Butler, G.; ESPE-PES-SLEP-JSPE-APEG-APPES-ISPAE; The Congenital Hypothyroidism Consensus Conference Group. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J. Clin. Endocrinol. Metab. 2014, 99, 363–384. [Google Scholar] [CrossRef]
- Pine-Twaddell, E.; Romero, C.J.; Radovick, S. Vertical transmission of hypopituitarism: Critical importance of appropriate interpretation of thyroid function tests and levothyroxine therapy during pregnancy. Thyroid 2013, 23, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Sunthornthepvarakul, T.; Gottschalk, M.E.; Hayashi, Y.; Refetoff, S. Brief report: Resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N. Engl. J. Med. 1995, 332, 155–160. [Google Scholar] [CrossRef]
- Jonklaas, J.; Bianco, A.C.; Bauer, A.J.; Burman, K.D.; Cappola, A.R.; Celi, F.S.; Cooper, D.S.; Kim, B.W.; Peeters, R.P.; Rosenthal, M.S.; et al. Guidelines for the treatment of hypothyroidism: Prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 2014, 24, 1670–1751. [Google Scholar] [CrossRef] [Green Version]
- Kaplowitz, P.B.; Vaidyanathan, P. Update on pediatric hyperthyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Van der Kaay, D.C.; Wasserman, J.D.; Palmert, M.R. Management of Neonates Born to Mothers With Graves’ Disease. Pediatrics 2016, 137, e20151878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barczynski, M. Current approach to surgical management of hyperthyroidism. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 124–131. [Google Scholar] [CrossRef] [PubMed]
- De Luca, F.; Salzano, G.; Zirilli, G.; Calafiore, M.; Corica, D.; Sferlazzas, C. Management of hyperthyroidism in children. Expert Rev. Endocrinol. Metab. 2016, 11, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Niedziela, M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr. Relat. Cancer 2006, 13, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Foley, T.P., Jr.; Abbassi, V.; Copeland, K.C.; Draznin, M.B. Brief report: Hypothyroidism caused by chronic autoimmune thyroiditis in very young infants. N. Engl. J. Med. 1994, 330, 466–468. [Google Scholar] [CrossRef]
- Van Trotsenburg, A.S.; Kempers, M.J.; Endert, E.; Tijssen, J.G.; de Vijlder, J.J.; Vulsma, T. Trisomy 21 causes persistent congenital hypothyroidism presumably of thyroidal origin. Thyroid 2006, 16, 671–680. [Google Scholar] [CrossRef]
- Bull, M.J. Health supervision for children with Down syndrome. Pediatrics 2011, 128, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Van Dop, C.; Conte, F.A.; Koch, T.K.; Clark, S.J.; Wilson-Davis, S.L.; Grumbach, M.M. Pseudotumor cerebri associated with initiation of levothyroxine therapy for juvenile hypothyroidism. N. Engl. J. Med. 1983, 308, 1076–1080. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Leung, A.A.C. Evaluation and Management of Children with Thyrotoxicosis. Recent Pat. Endocr. Metab. Immune Drug Discov. 2017, 11, 22–31. [Google Scholar] [CrossRef]
- Burch, H.B.; Wartofsky, L. Life-threatening thyrotoxicosis. Thyroid storm. Endocrinol. Metab. Clin. N. Am. 1993, 22, 263–277. [Google Scholar] [CrossRef]
- Reddy, V.; Taha, W.; Kundumadam, S.; Khan, M. Atrial fibrillation and hyperthyroidism: A literature review. Indian Heart J. 2017, 69, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Amouzegar, A.; Azizi, F. Antithyroid Drugs. Iran J. Pharm. Res. 2019, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leger, J.; Kaguelidou, F.; Alberti, C.; Carel, J.C. Graves’ disease in children. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 233–243. [Google Scholar] [CrossRef]
- Sosa, J.A.; Tuggle, C.T.; Wang, T.S.; Thomas, D.C.; Boudourakis, L.; Rivkees, S.; Roman, S.A. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J. Clin. Endocrinol. Metab. 2008, 93, 3058–3065. [Google Scholar] [CrossRef]
- Dolphin, G.W. The risk of thyroid cancers following irradiation. Health Phys. 1968, 15, 219–228. [Google Scholar] [CrossRef]
- Boice, J.D., Jr. Thyroid disease 60 years after Hiroshima and 20 years after Chernobyl. JAMA 2006, 295, 1060–1062. [Google Scholar] [CrossRef]
- Alaguvelsamy, S.; Pal Singh, S.; Ramalingam, R.; Kombupalayam Komarappa Gounder, R. Giant toxic multinodular goiter with dyspnea: A case report. Int. J. Surg. Case Rep. 2020, 73, 190–195. [Google Scholar] [CrossRef]
- Chernock, R.D.; Rivera, B.; Borrelli, N.; Hill, D.A.; Fahiminiya, S.; Shah, T.; Chong, A.S.; Aqil, B.; Mehrad, M.; Giordano, T.J.; et al. Poorly differentiated thyroid carcinoma of childhood and adolescence: A distinct entity characterized by DICER1 mutations. Mod. Pathol. 2020, 33, 1264–1274. [Google Scholar] [CrossRef]
- Francis, G.L.; Waguespack, S.G.; Bauer, A.J.; Angelos, P.; Benvenga, S.; Cerutti, J.M.; Dinauer, C.A.; Hamilton, J.; Hay, I.D.; Luster, M.; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 25, 716–759. [Google Scholar] [CrossRef] [Green Version]
- Canberk, S.; Barroca, H.; Girao, I.; Aydin, O.; Uguz, A.; Erdogan, K.; Tastekin, E.; Bongiovanni, M.; Soares, P.; Maximo, V.; et al. Performance of the Bethesda System for Reporting Thyroid Cytology in Multi-Institutional Large Cohort of Pediatric Thyroid Nodules: A Detailed Analysis. Diagnostics 2022, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, M.A.R.S.A. Pediatric Endocrinology. In Thyroid Disorders in Children and Adolescents; Elsivier: Philadelphia, PA, USA, 2014. [Google Scholar]
- Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.A.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Dal Maso, L.; et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 144–152. [Google Scholar] [CrossRef]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.J. Pediatric Thyroid Cancer: Genetics, Therapeutics and Outcome. Endocrinol. Metab. Clin. N. Am. 2020, 49, 589–611. [Google Scholar] [CrossRef]
Gene Mutations | Clinical Features |
---|---|
TSHR, NKX2-1, FOXE1, PAX8, GLIS3 | Athyreosis |
SLC5A5 | Dyshormonogenesis: sodium-iodine symporter defects, which lead to impaired iodide transport into thyroid follicular cells |
DUOX1, DUOX2 | Dyshormonogenesis: H2O2 generation deficiency. This is associated with the defect in hydrogen peroxide synthesis. Hydrogen peroxide is a substrate for TPO in the oxidation of iodide. |
SECISBP2 | Dyshormonogenesis: iodothyronine monodeiodinase deficiency |
SLC26A4 | Dyshormonogenesis: Pendrin deficiency leads to impaired transport of iodine out of the cell and into the follicular colloid, and in the cochlea, where it results in a sensorineural hearing loss |
TPO | Dyshormonogenesis: Thyroid peroxidase deficiency |
IYD | Dyshormonogenesis: iodotyrosine deiodinase or dehalogenase deficiency |
TG | Dyshormonogenesis: thyroglobulin deficiency |
THRA THRB | Thyroid hormone receptor resistance. Children usually present with failure to thrive, attention deficit hyperactivity disorder with usually no clinical features of hyperthyroidism despite elevated total T3, total T4, free T3, free T4 |
SLC16A2 | Thyroid resistance due to MCT8 (monocarboxylate transporter 8) deficiency which usually presents with severe psychoneuromotor deficiency, hypotonia, and high serum T3 levels due to impaired transport of hormone into neuronal cells. |
TRH | Central CH: TRH deficiency |
TSHB | Central CH: TSH deficiency |
IGSF1, TBL1X, IRS4 | Central CH |
Disease | Gene Mutation/Cause | Thyroid Neoplasia |
---|---|---|
Goiter | Iodine deficiency | Thyroid nodules |
Hodgkin lymphoma, leukemia, central nervous system tumors | Radiation | Thyroid nodules peak 15–25 years after radiation exposure |
Familial adenomatous polyposis | APC | Papillary thyroid cancer |
Carney complex type 1 | PRKAR1A | Multinodular goiter Follicular adenomas Differentiated thyroid cancer (Papillary thyroid cancer and Follicular thyroid cancer) |
DICER1 Syndrome | DICER1 | Multinodular goiter Differentiated thyroid cancer Poorly differentiated thyroid carcinoma |
PTEN hamartoma tumor syndrome | PTEN | Multinodular goiter Follicular adenomas Differentiated thyroid cancer |
Werner syndrome | WRN | Differentiated thyroid cancer |
nonmedullary thyroid cancer | NKX2-1 | Differentiated thyroid cancer |
Gene Mutation | Thyroid Cancer Associated |
---|---|
PTEN | Cowden syndrome 1: hamartomas of mucosal surfaces, DTC, breast and endometrial carcinoma |
APC | Gardner syndrome: familial colorectal polyposis, other tumors including DTC |
WRN | Werner syndrome: premature aging, DTC, melanomas, sarcomas |
TPO | CH, thyroid nodules goiter, rarely DTC |
RET | Medullary carcinoma of the thyroid in MEN2a, MEN2b, isolated familial medullary carcinoma of the thyroid |
MEN Type | RET Codon | MTC | Mucosal Neuromas | Hyperparathyroidism | Pheochromocytoma |
---|---|---|---|---|---|
2A | 634 | + | − | +/− | +/− |
609 | |||||
611 | |||||
618 | |||||
620 | |||||
790 | |||||
791 | |||||
2B | 918 | + | + | − | + |
883 |
RET Mutation | Risk | Monitoring | Age of Thyroidectomy |
---|---|---|---|
918 | Highest | n/a | First year of life |
C634 A883 | High | Calcitonin level every 6 months started at the age of 1 year | By the age of 5 years |
G553C C609 C611 C618 C620 C630 C631 K666E E768D L790F V804L V804M S891A R912P | Moderate | Calcitonin level every 6–12 months started at the age of 5 years | When found with elevated calcitonin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavryutina, I.; Fordjour, L.; Chin, V.L. Genetics of Thyroid Disorders. Endocrines 2022, 3, 198-213. https://doi.org/10.3390/endocrines3020018
Gavryutina I, Fordjour L, Chin VL. Genetics of Thyroid Disorders. Endocrines. 2022; 3(2):198-213. https://doi.org/10.3390/endocrines3020018
Chicago/Turabian StyleGavryutina, Irina, Lawrence Fordjour, and Vivian L. Chin. 2022. "Genetics of Thyroid Disorders" Endocrines 3, no. 2: 198-213. https://doi.org/10.3390/endocrines3020018
APA StyleGavryutina, I., Fordjour, L., & Chin, V. L. (2022). Genetics of Thyroid Disorders. Endocrines, 3(2), 198-213. https://doi.org/10.3390/endocrines3020018