Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Collection
2.2. Delineation of SROs
2.3. Definition and Identification of Candidate Genes
2.4. Comorbidities
3. Results
3.1. Delineation of SROs
3.2. Previously Described Genes and Regions
3.3. Candidate Genes and Regions
3.4. Gene-Desert SROs
3.5. Comorbidities
4. Discussion
4.1. DECIPHER
4.2. Delineation of SROs
4.3. Candidate Genes and Regions
4.4. Gene-Desert SROs
4.5. Comorbidities
4.6. Limitations and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connell, M.T.; Owen, C.M.; Segars, J.H. Genetic Syndromes and Genes Involved in the Development of the Female Reproductive Tract: A Possible Role for Gene Therapy. J. Genet. Syndr. Gene Ther. 2013, 4, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massé, J.; Watrin, T.; Laurent, A.; Deschamps, S.; Guerrier, D.; Pellerin, I. The Developing Female Genital Tract: From Genetics to Epigenetics. Int. J. Dev. Biol. 2009, 53, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, M.; Harley, V.R. Disorders of Sex Development: New Genes, New Concepts. Nat. Rev. Endocrinol. 2013, 9, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Horii, M.; Boyd, T.K.; Quade, B.J.; Crum, C.P.; Parast, M.M. Chapter 1—Female Genital Tract Development and Disorders of Childhood. In Diagnostic Gynecologic and Obstetric Pathology; Elsevier: Philadelphia, PA, USA, 2018; pp. 1–21. ISBN 9780323447324. [Google Scholar]
- MacLaughlin, D.T.; Teixeira, J.; Donahoe, P.K. Perspective: Reproductive Tract Development—New Discoveries and Future Directions. Endocrinology 2001, 142, 2167–2172. [Google Scholar] [CrossRef]
- Ince, T.A.; Cviko, A.P.; Quade, B.J.; Yang, A.; McKeon, F.D.; Mutter, G.L.; Crum, C.P. P63 Coordinates Anogenital Modeling and Epithelial Cell Differentiation in the Developing Female Urogenital Tract. Am. J. Pathol. 2002, 161, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, R.H.; Adam, E.; Binder, G.L.; Gerthoffer, E. Upper Genital Tract Changes and Pregnancy Outcome in Offspring Exposed in Utero to Diethylstilbestrol. Am. J. Obstet. Gynecol. 1980, 137, 299–308. [Google Scholar] [CrossRef]
- Ho, S.M.; Cheong, A.; Adgent, M.A.; Veevers, J.; Suen, A.A.; Tam, N.N.C.; Leung, Y.K.; Jefferson, W.N.; Williams, C.J. Environmental Factors, Epigenetics, and Developmental Origin of Reproductive Disorders. Reprod. Toxicol. 2017, 68, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Dreger, A.D.; Chase, C.; Sousa, A.; Gruppuso, P.A.; Frader, J. Changing the Nomenclature/Taxonomy for Intersex: A Scientific and Clinical Rationale. J. Pediatric Endocrinol. Metab. 2005, 18, 729–733. [Google Scholar] [CrossRef]
- Lee, P.A.; Houk, C.P.; Ahmed, S.F.; Hughes, I.A.; Achermann, J.; Ahmed, F.; Baskin, L.; Berenbaum, S.; Bertelloni, S.; Brock, J.; et al. Consensus Statement on Management of Intersex Disorders. Pediatrics 2006, 118, e488–e500. [Google Scholar] [CrossRef] [Green Version]
- Heeley, J.M.; Hollander, A.S.; Austin, P.F.; Merritt, D.F.; Wesevich, V.G.; Amarillo, I.E. Risk Association of Congenital Anomalies in Patients with Ambiguous Genitalia: A 22-Year Single-Center Experience. J. Pediatric Urol. 2018, 14, 153.e1–153.e7. [Google Scholar] [CrossRef]
- Sax, L. How Common Is Intersex? A Response to Anne Fausto-Sterling. J. Sex Res. 2002, 39, 174–178. [Google Scholar] [CrossRef]
- Thyen, U.; Lanz, K.; Holterhus, P.M.; Hiort, O. Epidemiology and Initial Management of Ambiguous Genitalia at Birth in Germany. Horm. Res. 2006, 66, 195–203. [Google Scholar] [CrossRef]
- Lee, P.A.; Nordenström, A.; Houk, C.P.; Ahmed, S.F.; Auchus, R.; Baratz, A.; Baratz Dalke, K.; Liao, L.M.; Lin-Su, K.; Looijenga, L.H.J.; et al. Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. Horm. Res. Paediatr. 2016, 85, 158–180. [Google Scholar] [CrossRef]
- Öcal, G.; Berberoğlu, M.; Siklar, Z.; Aycan, Z.; Hacihamdioglu, B.; Erdeve, Ş.S.; Çamtosun, E.; Kocaay, P.; Ruhi, H.I.; Kiliç, B.G.; et al. Clinical Review of 95 Patients with 46,Xx Disorders of Sex Development Based on the New Chicago Classification. J. Pediatric Adolesc. Gynecol. 2015, 28, 6–11. [Google Scholar] [CrossRef]
- De Paula, G.B.; Barros, B.A.; Carpini, S.; Tincani, B.J.; Mazzola, T.N.; Sanches Guaragna, M.; Piveta, C.S.D.C.; De Oliveira, L.C.; Andrade, J.G.R.; Guaragna-Filho, G.; et al. 408 Cases of Genital Ambiguity Followed by Single Multidisciplinary Team during 23 Years: Etiologic Diagnosis and Sex of Rearing. Int. J. Endocrinol. 2016, 2016, 4963574. [Google Scholar] [CrossRef] [Green Version]
- Cox, K.; Bryce, J.; Jiang, J.; Rodie, M.; Sinnott, R.; Alkhawari, M.; Arlt, W.; Audi, L.; Balsamo, A.; Bertelloni, S.; et al. Novel Associations in Disorders of Sex Development: Findings from the I-DSD Registry. J. Clin. Endocrinol. Metab. 2014, 99, E348–E355. [Google Scholar] [CrossRef] [Green Version]
- Hutson, J.M.; Grover, S.R.; O’Connell, M.; Pennell, S.D. Malformation Syndromes Associated with Disorders of Sex Development. Nat. Publ. Group 2014, 10, 476–487. [Google Scholar] [CrossRef]
- Huang, B.; Wang, S.; Ning, Y.; Lamb, A.N.; Bartley, J. Autosomal XX Sex Reversal Caused by Duplication of SOX9. Am. J. Med. Genet. 1999, 87, 349–353. [Google Scholar] [CrossRef]
- Refai, O.; Friedman, A.; Terry, L.; Jewett, T.; Pearlman, A.; Perle, M.A.; Ostrer, H. De Novo 12;17 Translocation Upstream of Sox9 Resulting in 46,Xx Testicular Disorder of Sex Development. Am. J. Med. Genet. Part A 2010, 152, 422–426. [Google Scholar] [CrossRef]
- Bardoni, B.; Zanaria, E.; Guioli, S.; Floridia, G.; Worley, K.C.; Tonini, G.; Ferrante, E.; Chiumello, G.; McCabe, E.R.B.; Fraccaro, M.; et al. A Dosage Sensitive Locus at Chromosome Xp21 Is Involved in Male to Female Sex Reversal. Nat. Genet. 1994, 7, 497–501. [Google Scholar] [CrossRef]
- Smyk, M.; Berg, J.S.; Pursley, A.; Curtis, F.K.; Fernandez, B.A.; Bien-Willner, G.A.; Lupski, J.R.; Cheung, S.W.; Stankiewicz, P. Male-to-Female Sex Reversal Associated with an ∼250 Kb Deletion Upstream of NR0B1 (DAX1). Hum. Genet. 2007, 122, 63–70. [Google Scholar] [CrossRef]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Kent, W.; Sugnet, C.; Furey, T.; Roskin, K.; Pringle, T.; Zahler, A.; Haussler, D. UCSC Genome Browser. Available online: https://genome.ucsc.edu/cite.html (accessed on 10 January 2021).
- Demir Eksi, D.; Shen, Y.; Erman, M.; Chorich, L.P.; Sullivan, M.E.; Bilekdemir, M.; Yllmaz, E.; Luleci, G.; Kim, H.G.; Alper, O.M.; et al. Copy Number Variation and Regions of Homozygosity Analysis in Patients with Müllerian Aplasia. Mol. Cytogenet. 2018, 11, 13. [Google Scholar] [CrossRef]
- Audí, L.; Ahmed, S.F.; Krone, N.; Cools, M.; McElreavey, K.; Holterhus, P.M.; Greenfield, A.; Bashamboo, A.; Hiort, O.; Wudy, S.A.; et al. Genetics in Endocrinology: Approaches to Molecular Genetic Diagnosis in the Management of Differences/Disorders of Sex Development (DSD): Position Paper of EU COST Action BM 1303 “DSDnet”. Eur. J. Endocrinol. 2018, 179, R197–R206. [Google Scholar] [CrossRef] [Green Version]
- Bistritzer, T.; Fried, K.; Lahat, E.; Dvir, M.; Goldberg, M. Congenital Contractural Arachnodactyly in Two Double Second Cousins: Possible Homozygosity. Clin. Genet. 1993, 44, 15–19. [Google Scholar] [CrossRef]
- Theisen, J.G.; Amarillo, I.E. Creating Affirmative and Inclusive Practices When Providing Genetic and Genomic Diagnostic and Research Services to Gender-Expansive and Transgender Patients. J. Appl. Lab. Med. 2021, 6, 142–154. [Google Scholar] [CrossRef]
- Hagan, A.; Amarillo, I.E. Small Copy-Number Variations Involving Genes of the FGF Pathway in Differences in Sex Development. Hum. Genome Var. 2017, 4, 17011. [Google Scholar] [CrossRef] [Green Version]
- Amarillo, I.E.; Nievera, I.; Hagan, A.; Huchthagowder, V.; Heeley, J.; Hollander, A.; Koenig, J.; Austin, P.; Wang, T. Integrated Small Copy Number Variations and Epigenome Maps of Disorders of Sex Development. Hum. Genome Var. 2016, 3, 16012. [Google Scholar] [CrossRef]
- Croft, B.; Ohnesorg, T.; Hewitt, J.; Bowles, J.; Quinn, A.; Tan, J.; Corbin, V.; Pelosi, E.; van den Bergen, J.; Sreenivasan, R.; et al. Human Sex Reversal Is Caused by Duplication or Deletion of Core Enhancers Upstream of SOX9. Nat. Commun. 2018, 9, 5319. [Google Scholar] [CrossRef] [Green Version]
- García-Acero, M.; Moreno-Niño, O.; Suárez-Obando, F.; Molina, M.; Manotas, M.C.; Prieto, J.C.; Forero, C.; Céspedes, C.; Pérez, J.; Fernandez, N.; et al. Disorders of Sex Development: Genetic Characterization of a Patient Cohort. Mol. Med. Rep. 2020, 21, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Kohva, E.; Miettinen, P.J.; Taskinen, S.; Hero, M.; Tarkkanen, A.; Raivio, T. Disorders of Sex Development: Timing of Diagnosis and Management in a Single Large Tertiary Center. Endocr. Connect. 2018, 7, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggers, S.; Sadedin, S.; van den Bergen, J.A.; Robevska, G.; Ohnesorg, T.; Hewitt, J.; Lambeth, L.; Bouty, A.; Knarston, I.M.; Tan, T.Y.; et al. Disorders of Sex Development: Insights from Targeted Gene Sequencing of a Large International Patient Cohort. Genome Biol. 2016, 17, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannour-Louet, M.; Han, S.; Corbett, S.T.; Louet, J.F.; Yatsenko, S.; Meyers, L.; Shaw, C.A.; Kang, S.H.L.; Cheung, S.W.; Lamb, D.J. Identification of De Novo Copy Number Variants Associated with Human Disorders of Sexual Development. PLoS ONE 2010, 5, e15392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheroki, C.; Krepischi-Santos, A.C.V.; Szuhai, K.; Brenner, V.; Kim, C.A.E.; Otto, P.A.; Rosenberg, C. Genomic Imbalances Associated with Müllerian Aplasia. J. Med. Genet. 2008, 45, 228–232. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Strick, R.; Storer, M.; Huang, N.; Rad, R.; Willatt, L.; Fitzgerald, T.; Martin, V.; Sandford, R.; Carter, N.P.; et al. High Incidence of Recurrent Copy Number Variants in Patients with Isolated and Syndromic Müllerian Aplasia. J. Med. Genet. 2011, 48, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.S.; Demir Eksi, D.; Shen, Y.; Lossie, A.C.; Chorich, L.P.; Sullivan, M.E.; Phillips, J.A.; Erman, M.; Kim, H.G.; Alper, O.M.; et al. Genetic Analysis of Mayer-Rokitansky-Kuster-Hauser Syndrome in a Large Cohort of Families. Fertil. Steril. 2017, 108, 145–151.e2. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Li, J.; Song, L.; Ji, C.; Böing, M.; Chen, J.; Brand-Saberi, B. GGNBP2 Is Necessary for Testis Morphology and Sperm Development. Sci. Rep. 2017, 7, 2998. [Google Scholar] [CrossRef]
- Haller, M.; Au, J.; O’Neill, M.; Lamb, D.J. 16p11.2 Transcription Factor MAZ Is a Dosage-Sensitive Regulator of Genitourinary Development. Proc. Natl. Acad. Sci. USA 2018, 115, E1849–E1858. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, A.; Huether, R.; Machado, A.Z.; Groden, M.; Liu, H.M.; Upadhyay, K.; Vivian, O.; Gomes, N.L.; Lerario, A.M.; Nishi, M.Y.; et al. Mutations in MAP3K1 That Cause 46,XY Disorders of Sex Development Disrupt Distinct Structural Domains in the Protein. Hum. Mol. Genet. 2019, 28, 1620–1628. [Google Scholar] [CrossRef]
- Loke, J.; Pearlman, A.; Radi, O.; Zuffardi, O.; Giussani, U.; Pallotta, R.; Camerino, G.; Ostrer, H. Mutations in MAP3K1 Tilt the Balance from SOX9/FGF9 to WNT/β-Catenin Signaling. Hum. Mol. Genet. 2014, 23, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Uda, M.; Ottolenghi, C.; Crisponi, L.; Garcia, J.E.; Deiana, M.; Kimber, W.; Forabosco, A.; Cao, A.; Schlessinger, D.; Pilia, G. Foxl2 Disruption Causes Mouse Ovarian Failure by Pervasive Blockage of Follicle Development. Hum. Mol. Genet. 2004, 13, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Ottolenghi, C.; Omari, S.; Garcia-Ortiz, J.E.; Uda, M.; Crisponi, L.; Forabosco, A.; Pilia, G.; Schlessinger, D. Foxl2 Is Required for Commitment to Ovary Differentiation. Hum. Mol. Genet. 2005, 14, 2053–2062. [Google Scholar] [CrossRef]
- Yao, H.H.C.; Matzuk, M.M.; Jorgez, C.J.; Menke, D.B.; Page, D.C.; Swain, A.; Capel, B. Follistatin Operates Downstream of Wnt4 in Mammalian Ovary Organogenesis. Dev. Dyn. 2004, 230, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.Y.; Liu, Z.; Shimada, M.; Sterneck, E.; Johnson, P.F.; Hedrick, S.M.; Richards, J.S. MAPK3/1 (ERK1/2) in Ovarian Granulosa Cells Are Essential for Female Fertility. Science 2009, 324, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Abnormal/Ambiguous Genitalia Panel|The University of Chicago Genetic Services. Available online: https://dnatesting.uchicago.edu/tests/abnormalambiguous-genitalia-panel (accessed on 13 September 2020).
- Anastasio, N.; Ben-Omran, T.; Teebi, A.; Ha, K.C.H.; Lalonde, E.; Ali, R.; Almureikhi, M.; der Kaloustian, V.M.; Liu, J.; Rosenblatt, D.S.; et al. Mutations in SCARF2 Are Responsible for van Den Ende-Gupta Syndrome. Am. J. Hum. Genet. 2010, 87, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Jerome, L.A.; Papaioannou, V.E. DiGeorge Syndrome Phenotype in Mice Mutant for the T-Box Gene, Tbx1. Nat. Genet. 2001, 27, 286–291. [Google Scholar] [CrossRef]
- Sundaram, U.T.; McDonald-McGinn, D.M.; Huff, D.; Emanuel, B.S.; Zackai, E.H.; Driscoll, D.A.; Bodurtha, J. Primary Amenorrhea and Absent Uterus in the 22q11.2 Deletion Syndrome. Am. J. Med. Genet. Part A 2007, 143, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Scheuerle, A. Teenager with Uterine Didelphys, Absent Kidney and 22q11.2 Deletion. Am. J. Med. Genet. Part A 2008, 146, 800–801. [Google Scholar] [CrossRef]
- Conover, C.A.; Faessen, G.F.; Ilg, K.E.; Chandrasekher, Y.A.; Christiansen, M.; Overgaard, M.T.; Oxvig, C.; Giudice, L.C. Pregnancy-Associated Plasma Protein-A Is the Insulin-like Growth Factor Binding Protein-4 Protease Secreted by Human Ovarian Granulosa Cells and Is a Marker of Dominant Follicle Selection and the Corpus Luteum. Endocrinology 2001, 142, 2155. [Google Scholar] [CrossRef]
- Hourvitz, A.; Kuwahara, A.; Hennebold, J.D.; Tavares, A.B.; Negishi, H.; Lee, T.H.; Erickson, G.F.; Adashi, E.Y. The Regulated Expression of the Pregnancy-Associated Plasma Protein-A in the Rodent Ovary: A Proposed Role in the Development of Dominant Follicles and of Corpora Lutea. Endocrinology 2002, 143, 1833–1844. [Google Scholar] [CrossRef]
- Nyegaard, M.; Overgaard, M.T.; Su, Y.Q.; Hamilton, A.E.; Kwintkiewicz, J.; Hsieh, M.; Nayak, N.R.; Conti, M.; Conover, C.A.; Giudice, L.C. Lack of Functional Pregnancy-Associated Plasma Protein-A (PAPPA) Compromises Mouse Ovarian Steroidogenesis and Female Fertility. Biol. Reprod. 2010, 82, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.J.; Wu, D.; Khan, F.A.; Huo, L.J. The SUMO Protease SENP3 Orchestrates G2-M Transition and Spindle Assembly in Mouse Oocytes. Sci. Rep. 2015, 5, 15600. [Google Scholar] [CrossRef] [Green Version]
- Plaks, V.; Gershon, E.; Zeisel, A.; Jacob-Hirsch, J.; Neeman, M.; Winterhager, E.; Rechavi, G.; Domany, E.; Dekel, N. Blastocyst Implantation Failure Relates to Impaired Translational Machinery Gene Expression. Reproduction 2014, 148, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Yatsenko, S.A.; Witchel, S.F. Genetic Approach to Ambiguous Genitalia and Disorders of Sex Development: What Clinicians Need to Know. Semin. Perinatol. 2017, 41, 232–243. [Google Scholar] [CrossRef]
- Benko, S.; Gordon, C.T.; Mallet, D.; Sreenivasan, R.; Thauvin-Robinet, C.; Brendehaug, A.; Thomas, S.; Bruland, O.; David, M.; Nicolino, M.; et al. Disruption of a Long Distance Regulatory Region Upstream of SOX9 in Isolated Disorders of Sex Development. J. Med. Genet. 2011, 48, 825–830. [Google Scholar] [CrossRef]
- Sutton, E.; Hughes, J.; White, S.; Sekido, R.; Tan, J.; Arboleda, V.; Rogers, N.; Knower, K.; Rowley, L.; Eyre, H.; et al. Identification of SOX3 as an XX Male Sex Reversal Gene in Mice and Humans. J. Clin. Investig. 2011, 121, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Gravholt, C.H.; Andersen, N.H.; Conway, G.S.; Dekkers, O.M.; Geffner, M.E.; Klein, K.O.; Lin, A.E.; Mauras, N.; Quigley, C.A.; Rubin, K.; et al. Clinical Practice Guidelines for the Care of Girls and Women with Turner Syndrome: Proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur. J. Endocrinol. 2017, 177, G1–G70. [Google Scholar] [CrossRef]
- Mazzocco, M.M.M.; Baumgardner, T.; Freund, L.S.; Reiss, A.L. Social Functioning among Girls with Fragile X or Turner Syndrome and Their Sisters. J. Autism Dev. Disord. 1998, 28, 509–517. [Google Scholar] [CrossRef]
- Grön, M.; Pietilä, K.; Alvesalo, L. The Craniofacial Complex in 45,X/46,XX Females. Arch. Oral Biol. 1999, 44, 1077–1084. [Google Scholar] [CrossRef]
- Babić, M.; Šćepan, I.; Mićić, M. Comparative Cephalometric Analysis in Patients with X-Chromosome Aneuploidy. Arch. Oral Biol. 1993, 38, 179–183. [Google Scholar] [CrossRef]
- Dumancic, J.; Kaic, Z.; Varga, M.L.; Lauc, T.; Dumic, M.; Milosevic, S.A.; Brkic, H. Characteristics of the Craniofacial Complex in Turner Syndrome. Arch. Oral Biol. 2010, 55, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Howard M Saal; Madeleine D Harbison; Irene Netchine Silver-Russell Syndrome. Available online: https://www-ncbi-nlm-nih-gov.beckerproxy.wustl.edu/books/NBK1324/ (accessed on 25 January 2021).
- Bruce, S.; Hannula-Jouppi, K.; Peltonen, J.; Kere, J.; Lipsanen-Nyman, M. Clinically Distinct Epigenetic Subgroups in Silver-Russell Syndrome: The Degree of H19 Hypomethylation Associates with Phenotype Severity and Genital and Skeletal Anomalies. J. Clin. Endocrinol. Metab. 2009, 94, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.B.; Carpenter, K.; Baynam, G.S.; MacKay, D.J.G.; Price, G.; Choong, C.S. Report and Review of Described Associations of Mayer-Rokitansky-Küster-Hauser Syndrome and Silver-Russell Syndrome. J. Paediatr. Child Health 2015, 51, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Latyshev, O.Y.; Samsonova, L.N.; Kasatkina, E.P.; Okminyan, G.F.; Kiselyova, Y.v.; Timofeyeva, Y.S. The Risk for Developing Tumor in Patients with Gonadal Dysgenesis 46,XY. Bull. Sib. Med. 2015, 14, 41–46. [Google Scholar] [CrossRef]
- Huang, H.; Wang, C.; Tian, Q. Gonadal Tumour Risk in 292 Phenotypic Female Patients with Disorders of Sex Development Containing Y Chromosome or Y-Derived Sequence. Clin. Endocrinol. 2017, 86, 621–627. [Google Scholar] [CrossRef]
- Berglund, A.; Johannsen, T.H.; Stochholm, K.; Viuff, M.H.; Fedder, J.; Main, K.M.; Gravholt, C.H. Morbidity, Mortality, and Socioeconomics in Females with 46,XY Disorders of Sex Development: A Nationwide Study. J. Clin. Endocrinol. Metab. 2018, 103, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Vilain, E.; Achermann, J.C.; Eugster, E.A.; Harley, V.R.; Morel, Y.; Wilson, J.D.; Hiort, O. We Used to Call Them Hermaphrodites. Genet. Med. 2007, 9, 65–66. [Google Scholar] [CrossRef]
- Hughes, I.A. Disorders of Sex Development: A New Definition and Classification. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 119–134. [Google Scholar] [CrossRef]
DSD Gene | Location | OMIM DSD Phenotype | Overlap with SRO | SRO | Notes |
---|---|---|---|---|---|
WNT4 | 1:22443798-22470462 | Mullerian aplasia and hyperandrogenism, Serkal syndrome | No | ||
RSPO1 | 1:38076951-38100595 | Palmoplantar hyperkeratosis with squamous cell carcinoma of skin and 46, XX sex reversal | No | ||
FOXL2 | 3:138663066-138665982 | BPES type I, premature ovarian failure 3 | No | ||
NR2F2 | 15:96869167-96883492 | Congenital heart defects (multiple types, 4), 46, XX sex reversal 5 | Yes | SRO097 | |
NR5A1 | 9:127243516-127269709 | Premature ovarian failure 7, 46XY sex reversal 3, spermatogenic failure 8, 46XX sex reversal 4 | No | ||
SOX3 | X:139585152-139587225 | Mental retardation, X-linked with isolated growth hormone deficiency; panhypopituitarism, X-linked | Yes | SRO171 | |
SOX9 | 17:70117161-70122561 | Campomelic dysplasia with 46XY sex reversal | No | ||
SOX10 | 22:38366693-38383429 | Waardenburg syndrome, type 2E | No | ||
SRY | Y:2654896-2655740 | 46XX sex reversal 1, 46XY sex reversal 1 | No | ||
HSD3B2 | 1:119957554-119965658 | CAH | No | ||
CYP21A2 | 6:32006042-32009447 | CAH | No | ||
POR | 7:75528518-75616173 | Antley-Bixler syndrome, Disordered steroidogenesis due to P450 oxidoreductase | No | ||
CYP19A1 | 15:51500254-51630807 | Aromatase excess syndrome, aromatase deficiency | No | ||
ESR1 | 6:151977826-152450754 | Estrogen resistance | No | ||
GRα/NR3C1 | 5:142657496-142815077 | Glucocorticoid resistance | No | ||
HOXA13 | 7:27233122-27239725 | Hand-foot-uterus syndrome, Guttmacher syndrome | No | ||
FGF9 | 13:22245522-22278637 | N/A | No | ||
CNV 17q12 | - | MRKH, types I and II | Yes | SRO115 | |
CNV 1q21.1 | - | MRKH, types I and II | Yes | SRO002-SRO003 | |
CNV 22q11.21 | - | MRKH, types I and II | Yes | SRO135-SRO141 | Overlaps with candidate genes SCARF2 and MED15 (SRO137), UBE2L3 and MAPK1 (SRO135) |
CNV Xq21.31 | - | MRKH, types I and II | Yes | SRO164-SRO166 | |
LHX8 | 1:75594119-75627218 | N/A | No | ||
EIF2B3 | 1:45316450-45452282 | Leukoencephalopathy with vanishing white matter | Yes | SRO003 | Phenotype may lead to ovarian failure in female carriers |
HFM1 | 1:91726323-91870426 | Premature ovarian failure 4 | No | ||
LMNA | 1:156052364-156109880 | Malouf syndrome | No | ||
EIF2B4 | 2:27587219-27593353 | Leukoencephalopathy with vanishing white matter | No | Phenotype may lead to ovarian failure in female carriers | |
LHCGR | 2:48859428-48982880 | Precocious puberty, male-limited; Leydig cell hypoplasia, type I | No | ||
FSHR | 2:49189296-49381676 | Ovarian dysgenesis 1, ovarian hyperstimulation syndrome, ovarian response to FSH stimulation | No | ||
FIGLA | 2:71004442-71017775 | Premature ovarian failure 6 | No | ||
HS6ST1 | 2:128994290-129076151 | Hypogonadotropic hypogonadism 15 with or without anosmia | No | ||
DCAF17 | 2:172290727-172341562 | Woodhouse-Sakati syndrome | No | ||
LARS2 | 3:45429998-45590913 | Perrault syndrome 4 | No | ||
EIF2B5 | 3:183852826-184402546 | Leukoencephalopathy with vanishing white matter | No | Phenotype may lead to ovarian failure in female carriers | |
TP63 | 3:189349205-189615068 | Limb-mammary syndrome, ADULT syndrome | No | ||
TACR3 | 4:104507188-104640973 | Hypogonadotropic hypogonadism 11 with ot without anosmia | No | ||
HSD17B4 | 5:118788138-118972894 | Perrault syndrome 1 | No | ||
HARS2 | 5:140071011-140078889 | Perrault syndrome 2 | No | ||
MCM9 | 6:119134605-119256327 | Ovarian dysgenesis | No | ||
GLI3 | 7:42000548-42277469 | Pallister-Hall syndrome, hypothalamic hamartomas | No | ||
SEMA3A | 7:83585093-84122040 | Hypogonadotropic hypogonadism 16 with or without anosmia | No | ||
FEZF1 | 7:121941448-121950745 | Hypogonadotropic hypogonadism 22 with or without anosmia | No | ||
NOBOX | 7:144094333-144107320 | Premature ovarian failure | Yes | SRO039 | |
FGF17 | 8:21899909-21906320 | Hypogonadotropic hypogonadism 20 with or without anosmia | No | ||
CHD7 | 8:61591337-61779465 | CHARGE syndrome, hypogonadotropic hypogonadism 5 with or without anosmia | No | ||
CYP11B1 | 8:143953772-143961262 | CAH | No | ||
SOHLH1 | 9:13858253-138591374 | Ovarian dysgenesis 5, spermatogenic failure 32 | Yes | SRO052 | |
FGF8 | 10: 103529899-103535854 | Hypogonadotropic hypogonadism 6 with or without anosmia | No | ||
C10ORF2 | 10: 102747124-102754158 | Perrault syndrome 5 | No | ||
WDR11 | 10: 122610687-122669036 | Hypogonadotropic hypogonadism 14 with or without anosmia | Yes | SRO065 | |
SYCE1 | 10:135367404-135382876 | Premature ovarian failure 12; spermatogenic failure 15 | No | ||
FSHB | 11:30252563-30256808 | Hypogonadotropic hypogonadism 24 without anosmia | Yes | SRO072 | |
WT1 | 11:32409321-32457176 | Frasier syndrome, Denys-Drash syndrome, Meacham syndrome | Yes | SRO073 | |
TAC3 | 12:57403784-57422667 | Hypogonadotropic hypogonadism 10 with or without anosmia | No | ||
NUP107 | 12:69080514-69136785 | Ovarian dysgenesis 6 | No | ||
TBX3 | 12:115108059-115121969 | Ulnar-mammary syndrome | No | ||
EIF2B1 | 12:124104953-124118313 | Leukoencephalopathy with vanishing white matter | No | Phenotype may lead to ovarian failure in female carriers | |
REC8 | 14:24641062-24629463 | N/A | No | ||
EIF2B2 | 14:75469614-75476292 | Leukoencephalopathy with vanishing white matter | No | Phenotype may lead to ovarian failure in female carriers | |
PMM2 | 16:8882680-8943188 | Congenital disorder of glycosylation, type Ia | No | ||
PSMC3IP | 17:40724333-40729849 | Ovarian dysgenesis 3 | No | ||
CBX2 | 17:77751931-77761782 | 46XY sex reversal 5 | No | ||
KISS1R | 19:917287-921015 | Precocious puberty central 1, hypogonadotropic hypogonadism 8 with or without anosmia | No | ||
CLPP | 19:6361463-6368919 | Perrault syndrome 3 | No | ||
LHB | 19:49519237-49520338 | Hypogonadotropic hypogonadism 23 with or without anosmia | No | ||
MKKS | 20:10381657-10414870 | McKusick-Kaufman syndrome, Bardet-Biedl syndrome 6 | No | ||
MCM8 | 20:5931298-5975852 | Premature ovarian failure 10 | No | ||
FLRT3 | 20:14303634-14318262 | Hypogonadotropic hypogonadism 21 with anosmia | No | ||
SMC1B | 22:45739944-45809500 | N/A | Yes | SRO144 | |
BMP15 | X:50653784-50659607 | Ovarian dysgenesis 2 | No | ||
DIAPH2 | X:95939662-96859996 | Premature ovarian failure 2A | Yes | SRO166 |
SRO | Locus | Del, Dup, or Both | Size (kb) | Genes | Names of Genes w/HI (≤10) | Names of Genes w/pLI (≥0.9) |
---|---|---|---|---|---|---|
SRO001 | 1p36.33-36.32 | Del | 1598.83 | 63 | - | GABRD, GNB1, PANK4, SKI, UBE2J2 |
SRO002 | 1q21.1-21.2 | Both | 1356.86 | 29 | GJA5 | - |
SRO003 | 1q21.1 | Dup | 1062.73 | 18 | - | ANKRD34A, PIAS3 |
SRO004 | 1q21.2 | Both | 1365.84 | 10 | - | - |
SRO005 | 1q44 | Both | 4590.14 | 103 | HNRNPU | AHCTF1, HNRNPU, KIF26B, ZNF496 |
SRO006 | 1q43-44 | Both | 7279.55 | 8 | AKT3 | AHCTF1, AKT3 |
SRO007 | 2p25.3 | Both | 3152.14 | 11 | - | MYT1L |
SRO008 | 2p25.3-25.1 | Both | 3933.81 | 12 | - | RNF144A, RPS7 |
SRO009 | 2p25.1-24.3 | Del | 5100.00 | 29 | CPSF3, ID2, YWHAQ | RNF144A, ASAP2, ADAM17, ROCK2 |
SRO010 | 2q31.1 | Del | 2268.94 | 20 | TLK1, GAD1, SSB, PPIG, BBS5 | TLK1, UBR3, PPIG, LRP2 |
SRO011 | 2q37.1-37.3 | Both | 11,223.73 | 165 | ALPP, ALPPL2, ECEL1, GBX2, HDAC4, PSMD1, TWIST2 | AGAP1, ATG16L1, ATG4B, DIS3L2, GIGYF2, HDAC4, HDLBP, ILKAP, INPP5D, KIF1A, NCL, PPP1R7, PSMD1, UBE2F |
SRO012 | 2q37.1 | Del | 0.002 | 1 | - | - |
SRO013 | 4p16.3 | Del | 4371.93 | 83 | FGFR3, MAEA | ADD1, CPLX1, CTBP1, FAM193A, HTT, PCGF3, WHSC1 |
SRO014 | 4p16.3-16.2 | Del | 1400.00 | 14 | MSX1 | CRMP1 |
SRO015 | 4p15.33-12 | Del | 34,458.19 | 85 | - | WDR1, KIAA0232, PPP2R2C, JAKMIP1, CRMP1 |
SRO016 | 4q35.1-35.2 | Both | 7804.23 | 82 | CASP3, TENM3 | CDKN2AIP, TENM3 |
SRO017 | 4q34.3-35.1 | Both | 5400.00 | 12 | TENM3 | TENM3 |
SRO018 | 4q34.1-34.3 | Del | 5899.58 | 28 | VEGFC, GALNTL6, HAND2 | GPM6, HMGB2 |
SRO019 | 4q33-34.1 | Del | 1500.00 | 9 | - | CLCN3 |
SRO020 | 5p15.2 | Both | 151.00 | 0 | - | - |
SRO021 | 5p15.33-15.31 | Both | 6549.11 | 46 | - | EXOC3, KIAA0947, PAPD7, SLC9A3, SLC6A3, TERT, TRIP13 |
SRO022 | 5p15.31-15.2 | Both | 4555.85 | 25 | CTNND2, ADCY2 | CTNND2, MARCH6, CCT5, ADCY2 |
SRO023 | 5p15.2-15.1 | Both | 2817.92 | 15 | - | TRIO |
SRO024 | 5p15.1-14.3 | Both | 3417.24 | 18 | - | - |
SRO025 | 5p13.1-12 | Dup | 5210.14 | 49 | NNT, GHR, DAB2, RICTOR | NNT, PAIP1, HMGCS1, ZNF131, PTGER4, RICTOR |
SRO026 | 6p25.2-25.1 | Both | 358.45 | 6 | PRPF4B | PRPF4B |
SRO027 | 6p25.3-25.2 | Del | 3789.82 | 36 | FOXC1, GMDS | TUBB2B, TUBB2A, GMDS, FOXC1 |
SRO028 | 6p25.1 | Del | 2846.73 | 21 | NRN1 | CDYL |
SRO029 | 6p25.1-23 | Del | 8137.02 | 41 | BMP6, TFAP2A, EDN1 | RREB1, DSP, TFAP2A, HIVEP1, RANBP9 |
SRO030 | 6q26 | Both | 465.00 | 3 | PARK2 | - |
SRO031 | 6q26-27 | Del | 6567.36 | 53 | DLL1, TBP | DLL1, MLLT4, PDE10A, PSMB1 |
SRO032 | 7p21.3 | Both | 1639.52 | 8 | - | THSD7A |
SRO033 | 7q21.11-21.3 | Del | 8291.93 | 66 | ABCB1, CDK14, CDK6, COL1A2, DMTF1, FZD1, GRM3, KRIT1, SRI | ANKIB1, CDK6, COL1A2, DBF4, DMTF1, |
SRO034 | 7q11.23-21.11 | Del | 8520.97 | 36 | SEMA3A, HGF, GNAI1, MAGI2 | SEMA3A, PCLO, CACNA2D1, HGF, GNAI1, MAGI2 |
SRO035 | 7q21.3 | Del | 3687.10 | 47 | SHFM1, DLX6, DLX5, TAC1 | DLX6, LMTK2 |
SRO036 | 7q36.2-36.3 | Both | 1257.04 | 13 | SHH | SHH, RBM33, PAXIP1 |
SRO037 | 7q36.3 | Del | 3338.25 | 24 | MNX1 | NCAPG2, UBE3C |
SRO038 | 7q35-36.2 | Del | 6376.72 | 93 | KCNH2, NOS3, CDK5, SMARCD3, RHEB, EZH2, CUL1, CNTNAP2 | ACTR3B, KMT2C, PRKAG2, RHEB, AGAP3, SLC4A2, KCNH2, ZNF777, EZH2, CUL1 |
SRO039 | 7q34-35 | Del | 5878.83 | 144 | CNTNAP2, | FAM131B |
SRO040 | 7q33-34 | Del | 3840.78 | 65 | BRAF | BRAF, TMEM178B, MKRN1, KDM7A, HIPK2, UBN2, KIAA1549, TRIM24 |
SRO041 | 8p23.1 | Both | 204.79 | 2 | - | - |
SRO042 | 8p23.1 | Both | 3134.75 | 45 | - | XKR6 |
SRO043 | 8p23.1 | Del | 802.03 | 33 | - | - |
SRO044 | 8p23.3-23.1 | Del | 8091.64 | 104 | ANGPT2 | ANGPT2, CSMD1, DLGAP2 |
SRO045 | 8p21.2-21.1 | Both | 1085.85 | 20 | PBK | PTK2B |
SRO046 | 8q21.3 | Dup | 468.05 | 5 | NECAB1 | - |
SRO047 | 8q22.1 | Both | 3012.69 | 31 | CCNE2 | ESRP1, INTS8, KIAA1429 |
SRO048 | 9p24.3 | Both | 155.65 | 4 | - | - |
SRO049 | 9p24.3-24.1 | Both | 5468.51 | 46 | SMARCA2, RFX3, GLIS3, JAK2 | UHRF2, CDC37L1, RFX3, SMARCA2 |
SRO050 | 9p24.1-23 | Both | 2483.79 | 10 | PTPRD | PTPRD |
SRO051 | 9p23 | Both | 2341.97 | 3 | - | - |
SRO052 | 9p23 | Both | 2758.03 | 10 | NFIB | NFIB |
SRO053 | 9p23-22.3 | Both | 2146.47 | 20 | NFIB, ZDHHC21, PSIP1 | NFIB, PSIP1 |
SRO054 | 9p22.3-21.3 | Both | 3653.53 | 21 | BNC2, SH3GL2, ADAMTSL1, RPS6 | RPS6, BNC2 |
SRO055 | 9p21.1 | Both | 604.19 | 1 | LINGO2 | - |
SRO056 | 9p13.3-12 | Both | 8272.95 | 166 | VCP, RNF38, PAX5, NPR2, GNE | VCP, UBE2R2, UBAP1, TLN1, TESK1, SHB, RUSC2, RNF38, PAX5, NOL6, CNTFR, CLTA |
SRO057 | 9q33.1 | Dup | 320.79 | 4 | ASTN2, PAPPA | ASTN2 |
SRO058 | 9q33.3-34.3 | Dup | 10,616.44 | 203 | SPTAN1, SET, RXRA, PBX3, MED27, LMX1B, ABL1 | ZER1, ZBTB43, ZBTB34, WDR5, TSC1, STXBP1, SPTAN1, SETX, SET, RXRA, RPL7A, RAPGEF1, RALGPS1, PRRC2B, PRDM12, PPP2R4, OLFM1, NUP188, NTNG2, LRRC8A, GOLGA2, ENG, DNM1, COL5A1, CAMSAP1, BRD3, ABL1 |
SRO059 | 10p15.3-15.1 | Del | 6499.99 | 62 | - | DIP2C, GTPBP4, KLF6, LARP4B, RBM17, ZMYND11 |
SRO060 | 10p15.1-14 | Del | 5600.00 | 34 | CELF2, GATA3 | UPF2, CELF2, GATA3, TAF3, SFMBT2 |
SRO061 | 10q26.2 | Both | 150.61 | 1 | - | - |
SRO062 | 10q26.2-26.3 | Del | 7000.59 | 38 | EBF3 | EBF3, PPP2R2D, INPP5A, FAM196A |
SRO063 | 10q26.1-26.2 | Del | 1143.31 | 9 | - | - |
SRO064 | 10q26.13 | Del | 3868.30 | 42 | BUB3, FGFR2 | FGFR2, HMX3, ZRANB1 |
SRO065 | 10q25.3-26.13 | Del | 4831.70 | 48 | TIAL1, EMX2 | HSPA12A, PDZD8, EMX2, RAB11FIP2, CACUL1, EIF3A, TIAL1, MCMBP |
SRO066 | 10q25.1-25.3 | Del | 6900.00 | 64 | ATRNL1, GFRA1, ADRB1, TCF7L2, VTI1A, SHOC2, PDCD4, SMC3, SMNDC1, MXI1, | ATRNL1, FAM160B1, ADD3, SMC3, RBM20, SHOC2, TCF7L2, TDRD1, ABLIM1 |
SRO067 | 11p15.1 | Both | 1076.48 | 9 | NAV2, NELL1 | NAV2 |
SRO068 | 11p15.4 | Both | 2055.28 | 97 | APBB1, ILK | APBB1, DCHS1, FAM160A2, TRIM3 |
SRO069 | 11p15.5-15.4 | Both | 2783.42 | 102 | TH, INS-IGF2, HRAS | AP2A2, BRSK2, CD81, MUC5B, PSMD13 |
SRO070 | 11p15.4 | Both | 2366.15 | 104 | RRM1, STIM1, RHOG | RRM1, PGAP2, NUP98 |
SRO071 | 11p15.4-15.1 | Both | 12,676.07 | 156 | LMO1, IPO7, SBF2, CTR9, EIF4G2, TEAD1, PTH, RRAS2, COPB1, SOX6, C11orf58, PIK3C2A, KCNJ11, ABCC8, MYOD1, KCNC1, TPH1, CTF2H1, TSG101, NAV2 | NAV2, SPTY2D1, GTF2H1, KCNC1, SOX6, PSMA1, COPB1, RRAS2, FAR1, ARNTL, TEAD1, USP47, EIF4G2, CTR9, WEE1, IPO7, ST5, RPL27A, EIF3F |
SRO072 | 11p14.3-13 | Del | 9200.00 | 37 | MPPED2, BDNF, SLC17A6 | KCNA4, MPPED2 |
SRO073 | 11p13-12 | Del | 5400.00 | 47 | CSTF3, LMO2, CAT, PDHX, CD44, IMMP1L, ELP4, PAX6, RCN1, WT1, EIF3M | FJX1, CAPRIN1, FBXO3, CSTF3, QSER1, PAX6, WT1 |
SRO074 | 11p12-11.12 | Del | 15,150.78 | 137 | RAG2, LRRC4C, API5, ALX4, PHF21A, AMBRA1, F2, CKAP5. PSMC3, CELF1 | TRAF6, LRRC4C, API5, TTC17, PRDM11, MAPK8IP1, PHF21A, CREB3L1, CHRM4, AMBRA1, ATG13, CKAP5, NR1H3, SPI1, PSMC3, CELF1, FNBP4 |
SRO075 | 11q24.3-25 | Both | 4351.73 | 22 | NTM, OPCML | VPS26B |
SRO076 | 11q24.2-24.3 | Both | 4237.86 | 34 | KIRREL3, ETS1, FLI1 | ZBTB44, KIRREL3, FLI1, ARHGAP32 |
SRO077 | 11q23.3-24.2 | Both | 11,362.14 | 225 | KIRREL3, CHEK1, STT3A, PKNOX2, HSPA8, PVRL1, CBL, H2AFX, HMBS, TRAPPC4, DDX6, ARCN1, BACE1, TAGLN, PAFAH1B2, CADM1 | KIRREL3, PKNOX2, MSANTD2, GRAMD1B, HSPA8, TBCEL, ARHGEF12, C2CD2L, HMBS, BCL9L, DDX6, ARCN1, KMT2A, DSCAML1, RNF214, PAFAH1B2, SIK3, |
SRO078 | 11q23.1-23.2 | Both | 2764.10 | 52 | CRYAB, NCAM1 | SIK2, NCAM1 |
SRO079 | 12p13.33-13.2 | Both | 10,062.99 | 197 | CHD4, GAPDH, ENO2, CCND2, CD4, FOXM1, NTF3, PHB2, ERC1, ATN1, CACNA1C | NTF3, USP5, CLSTN3, PRMT8, CCND2, TNFRSF1A, LPCAT3, ZNF384, FOXJ2, PHC1, ATN1, NOP2, PTPN6, CACNA1C, CHD4, KDM5A, WNK1 |
SRO080 | 12q15-21.1 | Del | 2517.45 | 18 | CNOT2, TRHDE | ZFC3H1, CNOT2, KCNMB4 |
SRO081 | 12q24.33 | Del | 4092.91 | 41 | POLE, RAN | EP400, SFSWAP, TMEM132D, ULK1, RAN |
SRO082 | 13q34 | Both | 1174.90 | 56 | - | COL4A1, CUL4A, ARHGEF7, MYO16, IRS2 |
SRO083 | 13q32.3-33.3 | Both | 9271.11 | 76 | ZIC2, FGF14, EFNB2, ARGLU1 | TM9SF2, ZIC2, FGF14, TPP2, EFNB2, FAM155A, TNFSF13B |
SRO084 | 13q31.3-32.3 | Both | 5436.94 | 68 | DCT, MBNL2, HS6ST3 | HS6ST3, IPO5, DOCK9 |
SRO085 | 13q31.3 | Both | 591.95 | 3 | GPC6 | - |
SRO086 | 13q31.2-31.3 | Del | 4689.28 | 32 | GPC6 | - |
SRO087 | 14q32.33 | Both | 29.28 | 0 | - | - |
SRO088 | 15q11.2 | Both | 179.10 | 9 | - | - |
SRO089 | 15q11.2 | Both | 118.16 | 29 | - | - |
SRO090 | 15q13.1-13.2 | Both | 1334.43 | 7 | TJP1 | TJP1 |
SRO091 | 15q11.1-11.2 | Both | 2123.17 | 46 | - | - |
SRO092 | 15q11.2 | Both | 2788.12 | 40 | - | MAGEL2, CYFIP1, NIPA2 |
SRO093 | 15q11.2-13.1 | Both | 3656.33 | 72 | GABRB3, UBE3A | HERC2, GABRA5, GABRB3, UBE3A |
SRO094 | 15q13.2-13.3 | Both | 1971.35 | 48 | - | OTUD7A |
SRO095 | 15q26.3 | Both | 403.94 | 7 | - | - |
SRO096 | 15q26.3 | Both | 1303.08 | 29 | - | ASB7, SNRPA1 |
SRO097 | 15q25.3-26.3 | Both | 11,733.12 | 117 | FURIN, NR2F2, IGF1R, MEF2A | ACAN, ZNF710, IQGAP1, FURIN, CHD2, NR2F2, IGF1R, MEF2A |
SRO098 | 15q25.2-25.3 | Both | 2641.57 | 53 | CPEB1, SEC11A | ZNF592, CPEB1, BNC1 |
SRO099 | 16p13.11 | Both | 205.81 | 3 | - | - |
SRO100 | 16p13.11 | Both | 8.99 | 1 | - | - |
SRO101 | 16p13.11 | Both | 572.98 | 10 | MYH11 | KIAA0430 |
SRO102 | 16p11.2 | Both | 469.06 | 28 | CDIPT, MAPK3 | TAOK2, MAZ |
SRO103 | 16q24.2 | Both | 692.95 | 6 | - | JPH3, ZCCHC14 |
SRO104 | 17p13.3 | Both | 235.24 | 5 | PAFAH1B1 | PAFAH1B1 |
SRO105 | 17p13.1 | Both | 19.17 | 9 | SENP3 | SENP3, EIF4A1 |
SRO106 | 17p13.3 | Both | 2326.50 | 39 | YWHAE, CRK, PITPNA, PRPF8, HIC1, SMG6, MNT | MNT, SMG6, RTN4RL1, PRPF8, PITPNA, CRK, YWHAE, NXN |
SRO107 | 17p13.3-13.1 | Both | 4913.54 | 129 | SENP3, POLR2A, C1QBP, ENO3, ARRB2, UBE2G1, PAFAH1B1 | POLR2A, ZBTB4, NLGN2, RABEP1, DERL2, PITPNM3, DLG4, PHF23, CTDNEP1, YBX2, NEURL4, C17orf85, ANKFY1, PELP1, MINK1, CAMTA2, PAFAH1B1, CLUH, RAP1GAP2 |
SRO108 | 17p13.1-12 | Both | 3464.84 | 66 | TP53, NTN1 | FXR2, KDM6B, CHD3, RPL26, NDEL1, MYH10, NTN1 |
SRO109 | 17p12-11.2 | Both | 5300.00 | 26 | NCOR1, MAP2K4 | MAP2K4, ARHGAP44, PMP22, NCOR1 |
SRO110 | 17p11.2 | Both | 541.36 | 6 | UBB | - |
SRO111 | 17p11.2 | Both | 3418.41 | 95 | COPS3 | COPS3, ALKBH5, GID4, MPRIP, RAI1 |
SRO112 | 17p11.2-11.1 | Both | 2043.96 | 13 | - | - |
SRO113 | 17p11.1-q11.1 | Del | 3112.87 | 1 | - | - |
SRO114 | 17q11.1-11.2 | Del | 1600.00 | 39 | WSB1, NLK | NLK, FOXN1 |
SRO115 | 17q12 | Both | 1132.85 | 12 | AATF, ACACA, HNF1B, LHX1, TADA2A | SYNRG, HNF1B, ACACA |
SRO116 | 17q12 | Both | 263.86 | 6 | - | GGNBP2 |
SRO117 | 17q25.3 | Both | 334.18 | 4 | - | - |
SRO118 | 17q25.3 | Dup | 642.63 | 19 | - | FASN, CSNK1D |
SRO119 | 17q25.3 | Both | 2454.63 | 21 | ACTG1 | NPLOC4 |
SRO120 | 18p11.32-11.31 | Both | 2900.00 | 24 | TYMS, USP14, YES1 | USP14, THOC1, SMCHD1, COLEC12 |
SRO121 | 18p11.31-11.1 | Both | 12,500.90 | 122 | PTPRM, DLGAP1 | DLGAP1, PTPRM, ANKRD12, PPP4R1, GNAL, PTPN2 |
SRO122 | 18q11.2 | Both | 789.00 | 6 | KCTD1, AQP4 | KCTD1 |
SRO123 | 18q23 | Del | 4843.15 | 26 | MBP | ZNF236, ZNF516 |
SRO124 | 18q22.1-23 | Del | 6421.99 | 27 | - | TSHZ1, SOCS6, ZNF407 |
SRO125 | 18q21.31 | Del | 1634.63 | 15 | NEDD4L, TXNL1 | WDR7, ONECUT2, NEDD4L |
SRO126 | 18q21.2-21.31 | Del | 684.32 | 0 | - | - |
SRO127 | 19p13.2 | Del | 140.94 | 9 | - | ILF3 |
SRO128 | 19q13.42 | Both | 14.95 | 1 | - | - |
SRO129 | 20p13 | Both | 4992.00 | 105 | SNRPB, FKBP1A, CSNK2A1 | ATRN, CENPB, CSNK2A1, PTPRA, SCRT2, SNPH, TBC1D20 |
SRO130 | 20q13.31-13.33 | Del | 7598.93 | 139 | BMP7, GNAS | ZNF512B, YTHDF1, TCFL5, TAF4, SYCP2, SS18L1, RGS19, RAE1, PSMA7, PMEPA1, PHACTR3, MYT1, MRGBP, LSM14B, KCNQ2, GMEB2, GID8, EEF1A2, DIDO1, ADRM1 |
SRO131 | 21q22.3 | Both | 75.21 | 1 | - | - |
SRO132 | 21q22.3 | Del | 103.63 | 3 | S100B | - |
SRO133 | 22q11.11 | Both | 280.84 | 26 | - | - |
SRO134 | 22q11.22 | Both | 74.42 | 6 | - | - |
SRO135 | 22q11.21-11.22 | Both | 400.00 | 14 | UBE2L3, MAPK1 | MAPK1 |
SRO136 | 22q11.21 | Both | 807.70 | 31 | CRKL | HIC2 |
SRO137 | 22q11.21 | Both | 290.00 | 12 | - | MED15, SCARF2 |
SRO138 | 22q11.21 | Both | 970.85 | 27 | DGCR8, RANBP1 | DGCR8, RTN4R |
SRO139 | 22q11.21 | Both | 874.38 | 26 | TBX1, CDC45 | SEPT5, CLDN5, UFD1L, HIRA |
SRO140 | 22q11.21 | Both | 971.53 | 10 | - | PEX26, MICAL3, CECR2 |
SRO141 | 22q11.1-11.21 | Both | 1875.45 | 51 | - | CECR2 |
SRO142 | 22q11.22-12.1 | Both | 3371.48 | 140 | SMARCB1, BCR | BCR, GNAZ, SMARCB1 |
SRO143 | 22q13.33 | Del | 1201.52 | 40 | - | BRD1, MAPK8IP2, PIM3, PLXNB2, SBF1, SHANK3 |
SRO144 | 22q13.2-13.33 | Del | 5799.67 | 54 | PPARA | GRAMD4, CELSR1, FBLN1, PHF21B, SULT4A1 |
SRO145 | Xp22.33 | Both | 558.00 | 0 | - | - |
SRO146 | Xp22.33 | Both | 61.70 | 1 | - | - |
SRO147 | Xp22.33 | Both | 1138.89 | 7 | - | - |
SRO148 | Xp22.33 | Both | 343.81 | 1 | - | - |
SRO149 | Xp22.33 | Both | 546.49 | 4 | - | - |
SRO150 | Xp22.33-22.31 | Both | 3748.32 | 9 * | - | NLGN4X |
SRO151 | Xp22.31-22.2 | Both | 4754.29 | 30 * | MID1 | GPR143, TBL1X, MID1, KAL1, ARHGAP6, CLCN4, WWC3 |
SRO152 | Xp22.2 | Both | 828.04 | 4 | - | ARHGAP6, MSL3 |
SRO153 | Xp22.2 | Both | 3584.97 | 24 * | MID1 | FRMPD4, ACE2, FANCB, MOSPD2, TLR7, GLRA2, PIGA, OFD1, GEMIN8, PRPS2 |
SRO154 | Xp22.2 | Both | 1415.85 | 23 * | RBBP7 | ZRSR2, TXLNG, RBBP7, SYAP1 |
SRO155 | Xp22.1-22.1 | Both | 7600.00 | 73 * | NHS, RPS6KA3, PTCHD1, PHEX, CNKSR2, ZFX, SH3KBP1 | RPS6KA3, NHS, CNKSR2, PHEX, SCML2, CDKL5, SH3KBP1, ZFX, MBTPS2, KLHL15, PDHA1, PPEF1, PCYT1B, EIF1AX, GPR64, RS1, SCML1, EIF2S3, SMS, PTCHD1 |
SRO156 | Xp22.11-21.3 | Both | 2906.29 | 24 * | POLA1 | POLA1, ARX, PCYT1B |
SRO157 | Xp21.3-21.1 | Both | 4742.52 | 21 * | DMD, IL1RAPL1 | NR0B1, GK, IL1RAPL1, DMD |
SRO158 | Xp21.1 | Del | 5184.76 | 23 * | DMD | DMD, CXorf22 |
SRO159 | Xq13.2-13.3 | Both | 1330.05 | 31 | - | KIAA2022, RLIM, SLC16A2 |
SRO160 | Xq13.3-21.1 | Del | 2992.29 | 24 * | ATRX, FGF16 | ATRX, ABCB7, ATP7A, MAGT1, MAGEE1 |
SRO161 | Xq21.1 | Both | 427.85 | 6 | PGK1 | ATP7A |
SRO162 | Xq21.1 | Del | 6380.50 | 49 * | - | BRWD3, CYLC1, MAGT1, TBX22, RPS6KA6 |
SRO163 | Xq21.1 | Both | 359.98 | 3 | - | - |
SRO164 | Xq21.1-21.31 | Del | 1877.83 | 16 * | DACH2 | CHM, ZNF711 |
SRO165 | Xq21.31 | Del | 1060.65 | 2 | - | - |
SRO166 | Xq21.31-26.2 | Del | 45,338.26 | 478 * | STAG2, UBE2A, MID2, RAP2C, COL4A5, RAB9B, CUL4B, AMMECR1, PCDH19, AIFM1, PAK3, THOC2, BTK, DIAPH2, IL1RAPL2, XIAP, GRIA3, DCX, PLP1, TENM1, GPC3 | STAG2, CUL4B, COL4A5, TENM1, THOC2, ARMCX4, SMARCA1, OCRL, BCORL1, ALG13, BTK, IGSF1, UTP14A, GRIA3, PCDH19, CENPI, TRPC5, WDR44, CSTF2, ZNF280C, GPC3, AIFM1, MORC4, NKAP, RGAG1, LRCH2, GLA, AMOT, NKRF, DIAPH2, NRK, ATG4A, PLS3, SLC25A14, GPRASP2, PAK3, RPS6KA6, TAF7L, UPF3B, IL1RAPL2, ACSL4, RBM41, IL13RA1, HNRNPH2, DCAF12L1, CXorf56, TMEM164, RBMX2, SLC25A5, SEPT6, PLP1, GPC4, COL4A6, ZBTB33, PRPS1, XIAP |
SRO167 | Xq26.2 | Both | 747.60 | 11 | GPC3 | GPC3 |
SRO168 | Xq26.2-26.3 | Del | 1584.34 | 37 * | HPRT1, PHF6 | DDX26B, PHF6, HPRT1, MOSPD1 |
SRO169 | Xq26.3-27.1 | Del | 3800.81 | 38 * | FGF13, ZIC3, CD40LG | ARHGEF6, SLC9A6, F9, HTATSF1, ZIC3, BRS3, FHL1, MCF2 |
SRO170 | Xq27.1 | Both | 729.17 | 4 * | - | ATP11C |
SRO171 | Xq27.1-27.3 | Both | 6562.57 | 55 * | SOX3 | - |
SRO172 | Xq27.3-28 | Both | 3575.07 | 42 * | FMR1, AFF2 | IDS, AFF2 |
SRO173 | Xq28 | Both | 2144.49 | 33 * | - | MTM1, MTMR1 |
SRO174 | Xq28 | Both | 2306.72 | 73 * | MECP2, DKC1, FLNA | FAM58A, RPL10, EMD, GAB3, NSDHL, G6PD, OPN1LW, ARHGAP4, FAM50A, MPP1, IRAK1, HAUS7, ATP6AP1, GDI1, SLC6A8, ABCD1, DKC1, TKTL1, ATP2B3, F8, L1CAM, HCFC1, FLNA |
SRO175 | Xq28 | Del | 7.95 | 1 | - | F8 |
SRO176 | Xq28 | Del | 431.69 | 9 | - | F8 |
SRO177 | Xq28 | Del | 281.08 | 19 * | - | - |
SRO178 | Xq28 | Del | 348.63 | 10 * | - | - |
SRO179 | Xq28 | Del | 42.80 | 1 * | - | - |
SRO180 | Yp11.2 | Both | 1944.43 | 56 * | - | - |
Candidate Gene | Location | Locus | %HI | pLI | Associated with Reproductive System | OMIM Phenotype | Atypical Female Genitalia Assoc. with OMIM |
---|---|---|---|---|---|---|---|
SENP3 | 17:7465192-7475287 | 17p13.1 | 9.88 | 0.83 | Yes | - | - |
EIF4A1 | 17:7476024-7482323 | 17p13.1 | 18.71 | 1.00 | Yes | - | - |
F8 | X:154064063-154255215 | Xq28 | 30.72 | 1.00 | No | Hemophilia A | None |
PAFAH1B1 | 17:2496504-2588909 | 17p13.3 | 2.20 | 1.00 | Yes; in cattle and boar | Lissencephaly Type 1 | None |
ILF3 | 19:10764937-10803093 | 19p13.2 | 21.20 | 1.00 | No | - | - |
S100B | 21:48018875-48025121 | 21q22.3 | 6.81 | 0.04 | No | - | - |
UBE2L3 | 22:21903736-21978323 | 22q11.21 | 3.65 | 0.87 | Possibly; may interact with sex hormones | - | - |
MAPK1 | 22:22108789-22221970 | 22q11.21-22q11.22 | 0.43 | 1.00 | Possibly; interacts with MAP3K1 | - | - |
GGNBP2 | 17:34900737-34946278 | 17q12 | 10.96 | - | Yes; testes development | - | - |
PARK2 | 6:161768452-163148803 | 6q26 | - | 0.00 | No | Ovarian cancer (somatic), lung cancer, juvenile Parkinson disease (type 2) | None |
PRPF4B | 6:4021501-4065217 | 6p25.2 | 3.37 | 1.00 | No | - | - |
PAPPA | 9:118916083-119164601 | 9q33.1 | 6.99 | 0.16 | Yes; ovarian function and fertility in mice | - | - |
NECAB1 | 8:91803778-91971636 | 8q21.3 | 7.98 | 0.03 | No | - | - |
ASTN2 | 9:119187504-120177348 | 9q33.1 | 2.18 | 0.72 | No | - | - |
CDIPT | 16:29869678-29875057 | 16p11.2 | 9.02 | 0.13 | No | - | - |
MAPK3 | 16:30125426-30134827 | 16p11.2 | 1.14 | 0.04 | Yes; hyperactivity associated with impaired fertility | - | - |
TAOK2 | 16:29984962-30003582 | 16p11.2 | 27.93 | 1.00 | No | - | - |
MAZ | 16:29817427-29823649 | 16p11.2 | 44.56 | 0.93 | Yes; TF necessary for GU system development | - | - |
MED15 | 22:20850200-20941919 | 22q11.21 | 24.40 | 1.00 | No | - | - |
SCARF21 | 22:20778874-20792146 | 22q11.21 | 70.16 | - | Yes; on individual academic center’s DSD panel | Van den Ende-Gupta syndrome | One case of ambiguous genitalia [27] |
ATP7A | X:77166194-77305892 | Xq21.1 | 30.06 | 1.00 | No | Spinal muscular atrophy (distal, X-linked), Occipital horn syndrome, Menkes disease | None |
PGK1 | X:77320685-77384793 | Xq21.1 | 2.45 | 0.77 | No | Phosphoglycerate kinase 1 deficiency | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amukamara, A.U.; Amarillo, I.E. Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development. Reprod. Med. 2022, 3, 160-188. https://doi.org/10.3390/reprodmed3020014
Amukamara AU, Amarillo IE. Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development. Reproductive Medicine. 2022; 3(2):160-188. https://doi.org/10.3390/reprodmed3020014
Chicago/Turabian StyleAmukamara, Ashley U., and Ina E. Amarillo. 2022. "Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development" Reproductive Medicine 3, no. 2: 160-188. https://doi.org/10.3390/reprodmed3020014
APA StyleAmukamara, A. U., & Amarillo, I. E. (2022). Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development. Reproductive Medicine, 3(2), 160-188. https://doi.org/10.3390/reprodmed3020014