The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT
Abstract
:1. Introduction
2. Blastomere Biopsy with FISH
3. Development of CGH
4. Development of Trophectoderm Biopsy
5. Advancements of Comprehensive Chromosome Screening
6. Current State-of-the-Art Screening with NGS/Karyomapping
7. Current Controversies in PGT
7.1. Is PGT-A Successful?
7.2. Mosaic Embryos: The Dilemma to Transfer or Not?
7.3. Ethical Considerations
8. Future Directions—Non-Invasive PGT
9. Conclusions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention; American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. 2005 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2007.
- Centers for Disease Control and Prevention; American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. 2016 Assisted Reproductive Technology National Summary Report; US Dept of Health and Human Services: Atlanta, GA, USA, 2018.
- Steptoe, P.C.; Edwards, R.G. Birth after the reimplantation of a human embryo. Lancet 1978, 2, 366. [Google Scholar] [CrossRef]
- Hassold, T.; Chiu, D. Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Hum. Genet. 1985, 70, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Parikh, F.R.; Athalye, A.S.; Naik, N.J.; Naik, D.J.; Sanap, R.R.; Madon, P.F. Preimplantation Genetic Testing: Its Evolution, Where Are We Today? J. Hum. Reprod. Sci. 2018, 11, 306–314. [Google Scholar] [CrossRef]
- Handyside, A.H.; Penketh, R.J.A.; Winston, R.M.L.; Pattinson, J.K.; Delhanty, J.D.A.; Tuddenham, E.G.D. Biopsy of Human Preimplantation Embryos and Sexing By Dna Amplification. Lancet 1989, 333, 347–349. [Google Scholar] [CrossRef]
- Handyside, A.H.; Kontogianni, E.H.; Hardy, K.; Winston, R.M.L. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990, 344, 768–770. [Google Scholar] [CrossRef]
- Griffin, D.K.; Wilton, L.J.; Handyside, A.H.; Atkinson, G.H.G.; Winston, R.M.L.; Delhanty, J.D.A. Diagnosis of sex in preimplantation embryos by fluorescent in situ hybridisation. Br. Med. J. 1993, 306, 1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munné, S.; Weier, H.U.G.; Stein, J.; Grifo, J.; Cohen, J. A fast and efficient method for simultaneous X and Y in situ hybridization of human blastomeres. J. Assist. Reprod. Genet. 1993, 10, 82–90. [Google Scholar] [CrossRef]
- Harris, B.S.; Bishop, K.C.; Kuller, J.A.; Alkilany, S.; Price, T.M. Preimplantation genetic testing: A review of current modalities. FS Rev. 2020, 2, 43–56. [Google Scholar] [CrossRef]
- Handyside, A.H.; Xu, K. Preimplantation genetic diagnosis comes of age. Semin. Reprod. Med. 2012, 30, 255–257. [Google Scholar] [CrossRef]
- Mastenbroek, S.; Twisk, M.; van Echten-Arends, J.; Sikkema-Raddatz, B.; Korevaar, J.C.; Verhoeve, H.R.; Vogel, N.E.A.; Arts, E.G.J.M.; de Vries, J.W.A.; Bossuyt, P.M.; et al. In Vitro Fertilization with Preimplantation Genetic Screening. N. Engl. J. Med. 2007, 357, 9–17. [Google Scholar] [CrossRef]
- Mastenbroek, S.; Twisk, M.; van der Veen, F.; Repping, S. Preimplantation genetic screening: A systematic review and meta-analysis of RCTs. Hum. Reprod. Update 2011, 17, 454–466. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.T.; Upham, K.M.; Forman, E.J.; Zhao, T.; Treff, N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: A randomized and paired clinical trial. Fertil. Steril. 2013, 100, 624–630. [Google Scholar] [CrossRef]
- Scott, R.T.; Upham, K.M.; Forman, E.J.; Hong, K.H.; Scott, K.L.; Taylor, D.; Tao, X.; Treff, N.R. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: A randomized controlled trial. Fertil. Steril. 2013, 100, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.; Sherlock, J.K.; Handyside, A.H.; Delhanty, J.D.A. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 1999, 27, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Vouillare, L.; Wilton, L.; Slater, H.W.R. Detection of Aneuploidy in Single Cells Using Comparative Genomic Hybridization-Voullaire -1999-Prenatal Diagnosis-Wiley Online Library. Available online: https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0223(199909)19:9%3C846::AID-PD657%3E3.0.CO;2-%23 (accessed on 1 February 2021).
- Wilton, L.; Williamson, R.; McBain, J.; Edgar, D.; Voullaire, L. Birth of a Healthy Infant after Preimplantation Confirmation of Euploidy by Comparative Genomic Hybridization. N. Engl. J. Med. 2001, 345, 1537–1541. [Google Scholar] [CrossRef]
- Brezina, P.R.; Anchan, R.; Kearns, W.G. Preimplantation genetic testing for aneuploidy: What technology should you use and what are the differences? J. Assist. Reprod. Genet. 2016, 33, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Hillman, S.C.; Pretlove, S.; Coomarasamy, A.; Mcmullan, D.J.; Davison, E.V.; Maher, E.R.; Kilby, M.D. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2011, 37, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Wells, D.; Munné, S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil. Steril. 2007, 87, 496–503. [Google Scholar] [CrossRef]
- De Vos, A.; Staessen, C.; De Rycke, M.; Verpoest, W.; Haentjens, P.; Devroey, P.; Liebaers, I.; Van De Velde, H. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: A prospective cohort of single embryo transfers. Hum. Reprod. 2009, 24, 2988–2996. [Google Scholar] [CrossRef]
- Treff, N.R.; Eccles, J.; Lello, L.; Bechor, E.; Hsu, J.; Plunkett, K.; Zimmerman, R.; Rana, B.; Samoilenko, A.; Hsu, S.; et al. Utility and First Clinical Application of Screening Embryos for Polygenic Disease Risk Reduction. Front. Endocrinol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Treff, N.R.; Zimmerman, R.; Bechor, E.; Hsu, J.; Rana, B.; Jensen, J.; Li, J.; Samoilenko, A.; Mowrey, W.; Van Alstine, J.; et al. Validation of concurrent preimplantation genetic testing for polygenic and monogenic disorders, structural rearrangements, and whole and segmental chromosome aneuploidy with a single universal platform. Eur. J. Med. Genet. 2019, 62. [Google Scholar] [CrossRef]
- Treff, N.R.; Zimmerman, R.S. Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy. Annu. Rev. Genomics Hum. Genet. 2017, 18, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Friedenthal, J.; Maxwell, S.M.; Munné, S.; Kramer, Y.; McCulloh, D.H.; McCaffrey, C.; Grifo, J.A. Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil. Steril. 2018, 109, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handyside, A.H.; Harton, G.L.; Mariani, B.; Thornhill, A.R.; Affara, N.; Shaw, M.A.; Griffin, D.K. Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med. Genet. 2010, 47, 651–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.J.; Melnick, A.P.; Stewart, J.D.; Xu, K.; Rosenwaks, Z. Preimplantation genetic screening: Who benefits? Fertil. Steril. 2016, 106, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Munné, S.; Kaplan, B.; Frattarelli, J.L.; Child, T.; Nakhuda, G.; Shamma, F.N.; Silverberg, K.; Kalista, T.; Handyside, A.H.; Katz-Jaffe, M.; et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: A multicenter randomized clinical trial. Fertil. Steril. 2019, 112, 1071–1079. [Google Scholar]
- Yang, Z.; Liu, J.; Collins, G.S.; Salem, S.A.; Liu, X.; Lyle, S.S.; Peck, A.C.; Sills, E.S.; Salem, R.D. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: Results from a randomized pilot study. Mol. Cytogenet. 2012, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Dahdouh, E.M.; Balayla, J.; Antonio García-Velasco, J. Comprehensive chromosome screening improves embryo selection: A meta-analysis. Fertil. Steril. 2015, 104, 1503–1512. [Google Scholar] [CrossRef] [Green Version]
- Rubio, C.; Bellver, J.; Rodrigo, L.; Castillón, G.; Guillén, A.; Vidal, C.; Giles, J.; Ferrando, M.; Cabanillas, S.; Remohí, J.; et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: A randomized, controlled study. Fertil. Steril. 2017. [Google Scholar] [CrossRef] [Green Version]
- Practice Committee and Genetic Counseling Professional Group (GCPG) of the American Society for Reproductive Medicine. Clinical management of mosaic results from preimplantation genetic testing for aneuploidy (PGT-A) of blastocysts: A committee opinion. Fertil. Steril. 2020, 114, 246–254. [Google Scholar] [CrossRef]
- Munné, S.; Grifo, J.; Wells, D. Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertil. Steril. 2016, 105, 1146–1149. [Google Scholar]
- Scott, R.T.; Galliano, D. The challenge of embryonic mosaicism in preimplantation genetic screening. Fertil. Steril. 2016, 105, 1150–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munné, S.; Blazek, J.; Large, M.; Martinez-Ortiz, P.A.; Nisson, H.; Liu, E.; Tarozzi, N.; Borini, A.; Becker, A.; Zhang, J.; et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil. Steril. 2017, 108, 62–71. [Google Scholar]
- Spinella, F.; Fiorentino, F.; Biricik, A.; Bono, S.; Ruberti, A.; Cotroneo, E.; Baldi, M.; Cursio, E.; Minasi, M.G.; Greco, E. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil. Steril. 2018, 109, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushnir, V.A.; Darmon, S.K.; Barad, D.H.; Gleicher, N. Degree of mosaicism in trophectoderm does not predict pregnancy potential: A corrected analysis of pregnancy outcomes following transfer of mosaic embryos. Reprod. Biol. Endocrinol. 2018, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, M.; Dhaenens, L.; Taelman, J.; Dheedene, A.; Bialecka, M.; De Sutter, P.; Chuva De Sousa Lopes, S.M.; Menten, B.; Heindryckx, B. Extended in vitro culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy. Hum. Reprod. 2019, 34, 758–769. [Google Scholar] [CrossRef]
- Marin, D.; Scott, R.T.; Treff, N.R. Preimplantation embryonic mosaicism: Origin, consequences and the reliability of comprehensive chromosome screening. Curr. Opin. Obstet. Gynecol. 2017, 29, 168–174. [Google Scholar] [CrossRef]
- Capalbo, A.; Ubaldi, F.M.; Rienzi, L.; Scott, R.; Treff, N. Detecting mosaicism in trophectodermbiopsies: Current challenges and future possibilities. Hum. Reprod. 2017, 32, 492–498. [Google Scholar]
- Ethics Committee of the American Society for Reproductive Medicine. Use of reproductive technology for sex selection for nonmedical reasons. Fertil. Steril. 2015, 103, 1418–1422. [Google Scholar]
- Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online 2013, 26, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Gianaroli, L.; Magli, M.; Pomante, A.; Crivello, A.; Cafueri, G.; Valerio, M.; Ferraretti, A. Blastocentesis: A source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil. Steril. 2015, 102, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Zander-Fox, D.; Hamilton, H.; Jasper, M.; Hodgson, B.; Fraser, M.; Bell, F. Ability to detect aneuploidy from cell free DNA collected from media is dependent on the stage of development of the embryo. Fertil. Steril. 2017, 108, e61. [Google Scholar] [CrossRef]
- Kuznyetsov, V.; Madjunkova, S.; Antes, R.; Abramov, R.; Motamedi, G.; Ibarrientos, Z.; Librach, C. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS ONE 2018, 13, e01972. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burks, C.; Van Heertum, K.; Weinerman, R. The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT. Reprod. Med. 2021, 2, 26-34. https://doi.org/10.3390/reprodmed2010004
Burks C, Van Heertum K, Weinerman R. The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT. Reproductive Medicine. 2021; 2(1):26-34. https://doi.org/10.3390/reprodmed2010004
Chicago/Turabian StyleBurks, Channing, Kristin Van Heertum, and Rachel Weinerman. 2021. "The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT" Reproductive Medicine 2, no. 1: 26-34. https://doi.org/10.3390/reprodmed2010004