Effect of Microfluidic Sperm Separation vs. Standard Sperm Washing Processes on Laboratory Outcomes and Clinical Pregnancy Rates in an Unselected Patient Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sperm Processing Methods
2.3. Assessment of Laboratory Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICSI | Intracytoplasmic sperm injection |
WHO | World Health Organization |
DGC | Density gradient centrifugation |
ROS | Reactive oxygen species |
DNA | Deoxyribonucleic acid |
ART | Assisted reproductive technology |
IVF | In vitro fertilization |
MII | Metaphase II |
IRB | Institutional Review Board |
IM | Insemination media |
References
- Centers for Disease Control and Prevention. Assisted Reproductive Technology National Summary Report 2016. Available online: https://www.cdc.gov/art/pdf/2016-report/ART-2016-National-Summary-Report.pdf (accessed on 8 September 2020).
- Borges, E., Jr.; Setti, A.S.; Braga, D.P.A.F.; Figeira, C.S.; Iaconelli, A., Jr. Total motile sperm count has a superior predictive value over the WHO 2010 cut-off values for the outcomes of intracytoplasmic sperm injection cycles. Andrology 2016, 4, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Schuster, T.G.; Cho, B.; Keller, L.M.; Takayama, S.; Smith, G.D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online 2003, 7, 75–81. [Google Scholar] [CrossRef]
- Yildiz, K.; Yuksel, S. Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilization failure. J. Assist. Reprod. Genet. 2019, 36, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Clarkson, J.S. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J. Androl. 1988, 9, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Harkiss, D.; Buckingham, D.W. Analysis of lipidperoxidation mechanisms in human spermatozoa. Mol. Reprod. Dev. 1993, 35, 302–315. [Google Scholar] [CrossRef]
- Altman, S.A.; Zastawny, T.H.; Randers-Eichhorn, L.; Cacciuttolo, M.A.; Akman, S.A.; Dizdaroglu, M.; Rao, G. Formation of DNA–protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Rad. Biol. Med. 1995, 19, 897–902. [Google Scholar] [CrossRef]
- Dizdaroglu, M. Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 1992, 275, 331–342. [Google Scholar] [CrossRef]
- Griveau, J.F.; Le Lannou, D. Effects of antioxidants on human sperm preparation techniques. Int. J. Androl. 1994, 17, 225–231. [Google Scholar] [CrossRef]
- Ji, B.T.; Shu, X.O.; Linet, M.S.; Zheng, W.; Wacholder, S.; Gao, Y.T.; Ying, D.M.; Jin, F. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J. Natl. Cancer Inst. 1997, 89, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Sorahan, T.; Lancashire, R.J.; Hultén, M.A.; Stewart, A.M. Childhood cancer deaths and parental use of tobacco: Deaths from 1953 to 1955. Br. J. Cancer 1997, 75, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Korivi, N.S. Microfluidics: Technologies and applications. In Nanolithography the Art of Fabricating Nanoelectric and Nanophotonic Devices and Systems; Feldman, M., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 424–443. [Google Scholar]
- Asghar, W.; Velasco, V.; Kingsley, J.L.; Shoukat, M.S.; Shafiee, H.; Anchan, R.M.; Mutter, G.L.; Tüzel, E.; Demirci, U. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv. Healthc. Mater. 2014, 3, 1671–1679. [Google Scholar] [CrossRef]
- Quinn, M.M.; Jalalian, L.; Ribeiro, S.; Ona, K.; Demirci, U.; Cedars, M.I.; Rosen, M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared with density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018, 33, 1388–1393. [Google Scholar] [CrossRef] [Green Version]
- Parrella, A.; Keating, D.; Cheung, S.; Xie, P.; Stewart, J.D.; Rosenwaks, Z.; Palermo, G.D. A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J. Assist. Reprod. Genet. 2019, 36, 2057–2066. [Google Scholar] [CrossRef] [Green Version]
- Yetkinel, S.; Kilicdag, E.B.; Aytac, P.C.; Haydardedeoglu, B.; Simsek, E.; Cok, T. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: A prospective, randomized controlled trial. J. Assist. Reprod. Genet. 2018, 36, 403–409. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. In vitro culture of human blastocyst. In Towards Reproductuve Certainty: Fertility and Genetics and Beyond; Jansen, R., Mortimer, D., Eds.; Parthenon Publishing: Carnforth, UK, 1999; pp. 378–388. [Google Scholar]
- Kalyan, E.Y.; Celik, S.C.; Okan, O.; Akdeniz, G.; Karabulut, S.; Caliskan, E. Does a microfluidic chip for sperm sorting have a positive add-on effect on laboratory and clinical outcomes of intracytoplasmic sperm injection cycles: A sibling oocyte study. Andrologia 2019, 51, e134303. [Google Scholar] [CrossRef]
- Ashwood-Smith, M.J.; Edwards, R.G. DNA repair by oocytes. Mol. Hum. Reprod. 1996, 2, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Ménézo, Y.; Dale, B.; Cohen, M. DNA damage and repair in human oocytes and embryos: A review. Zygote 2010, 18, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Alvarez, J.G. Sperm DNA fragmentation: Mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 2010, 36, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Stringer, J.M.; Winship, A.; Zerafa, N.; Wakefield, M.; Hutt, K. Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. Proc. Natl. Acad. Sci. USA 2020, 117, 11513–11522. [Google Scholar] [CrossRef]
- De Martin, H.; Cocuzza, M.S.; Tiseo, B.C.; Wood, G.J.A.; Miranda, E.P.; Monteleone, P.A.A.; Soares, J.M., Jr.; Serafini, P.C.; Srougi, M.; Baracta, E.C. Positive rheotaxis extended drop: A one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2017, 34, 1699–1708. [Google Scholar] [CrossRef]
- Nosrati, R.; Vollmer, M.; Eamer, L.; San Gabriel, M.C.; Zeidan, K.; Zini, A.; Sinton, D. Rapid selection of sperm with high DNA integrity. Lab. Chip 2014, 14, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Schulte, R.T.; Chung, Y.K.; Ohl, D.; Takayama, S.; Smith, G. Microfluidic sperm sorting device provides a novel method for selecting motile sperm with higher DNA integrity. Fertil. Steril. 2007, 88, 76. [Google Scholar] [CrossRef]
- Shirota, K.; Yotsumoto, F.; Itoh, H.; Obama, H.; Hidaka, N.; Nakajima, K.; Miyamoto, S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 2016, 105, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Laboratory Outcomes | ZyMōt | Control | ||
---|---|---|---|---|
Rate | % | Rate | % | |
Fertilization (2PN/MII) | 604/787 | 77 | 592/777 | 76 |
Blastocyst (Blast/2PN) | 296/604 | 49 | 282/592 | 48 |
Euploidy | 165/283 | 58 | 151/265 | 57 |
Mosaicism | 25/283 | 9 | 31/265 | 12 |
Clinical pregnancy | 22/39 | 56 | 25/33 | 76 |
Laboratory Outcomes | ZyMōt | DGC | Swim-Up Wash | |||
---|---|---|---|---|---|---|
Rate | % | Rate | % | Rate | % | |
Fertilization (2PN/MII) | 604/787 | 77 | 434/574 | 76 | 158/203 | 78 |
Blastocyst (Blast/2PN) | 296/604 a | 49 a | 190/434 a | 44 a | 92/158 b | 58 b |
Euploidy | 165/283 | 58 | 99/185 | 54 | 52/80 | 65 |
Mosaicism | 25/283 | 9 | 20/185 | 11 | 11/80 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leisinger, C.A.; Adaniya, G.; Freeman, M.R.; Behnke, E.J.; Aguirre, M.; VerMilyea, M.D.; Schiewe, M.C. Effect of Microfluidic Sperm Separation vs. Standard Sperm Washing Processes on Laboratory Outcomes and Clinical Pregnancy Rates in an Unselected Patient Population. Reprod. Med. 2021, 2, 125-130. https://doi.org/10.3390/reprodmed2030013
Leisinger CA, Adaniya G, Freeman MR, Behnke EJ, Aguirre M, VerMilyea MD, Schiewe MC. Effect of Microfluidic Sperm Separation vs. Standard Sperm Washing Processes on Laboratory Outcomes and Clinical Pregnancy Rates in an Unselected Patient Population. Reproductive Medicine. 2021; 2(3):125-130. https://doi.org/10.3390/reprodmed2030013
Chicago/Turabian StyleLeisinger, Chelsey A., Glen Adaniya, Melanie R. Freeman, Erica J. Behnke, Martha Aguirre, Matthew D. VerMilyea, and Mitchel C. Schiewe. 2021. "Effect of Microfluidic Sperm Separation vs. Standard Sperm Washing Processes on Laboratory Outcomes and Clinical Pregnancy Rates in an Unselected Patient Population" Reproductive Medicine 2, no. 3: 125-130. https://doi.org/10.3390/reprodmed2030013
APA StyleLeisinger, C. A., Adaniya, G., Freeman, M. R., Behnke, E. J., Aguirre, M., VerMilyea, M. D., & Schiewe, M. C. (2021). Effect of Microfluidic Sperm Separation vs. Standard Sperm Washing Processes on Laboratory Outcomes and Clinical Pregnancy Rates in an Unselected Patient Population. Reproductive Medicine, 2(3), 125-130. https://doi.org/10.3390/reprodmed2030013