Diagnostic Accuracy of Radiomics Versus Visual or Threshold-Based Assessment for Myocardial Scar/Fibrosis Detection on Cardiac MRI: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
- Population: Patients undergoing cardiac magnetic resonance (CMR) for suspected or known myocardial scar or fibrosis.
- Intervention/index test: Radiomics analysis applied to cine balanced steady-state free precession (bSSFP).
- Comparator/Reference standard: Visual or quantitative threshold-based assessment of scar or fibrosis on CMR.
- Outcome: Diagnostic accuracy studies directly comparing radiomics-derived metrics to the reference standard.
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Quality Assessment
2.6. Data Extraction
2.7. Data Synthesis
3. Results
3.1. Study Selection and Characteristics
3.2. MRI Acquisition
3.3. Segmentation, Feature Processing, and Modelling
3.4. Diagnostic Performance
3.5. Risk of Bias and Applicability (QUADAS-2)
3.6. Radiomics Quality Score (RQS)
3.7. Synthesis and Sources of Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giordano, C.; Francone, M.; Cundari, G.; Pisano, A.; d’Amati, G. Myocardial fibrosis: Morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc. Pathol. 2022, 56, 107391. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef]
- Karamitsos, T.D.; Arvanitaki, A.; Karvounis, H.; Neubauer, S.; Ferreira, V.M. Myocardial Tissue Characterization and Fibrosis by Imaging. JACC Cardiovasc. Imaging 2020, 13, 1221–1234. [Google Scholar] [CrossRef]
- Gupta, S.; Ge, Y.; Singh, A.; Gräni, C.; Kwong, R.Y. Multimodality Imaging Assessment of Myocardial Fibrosis. JACC Cardiovasc. Imaging 2021, 14, 2457–2469. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, S.M.; Greve, A.M.; Aspelund, T.; Schelbert, E.B.; Cao, J.J.; Danielsen, R.; Þorgeirsson, G.; Sigurðsson, S.; Eiríksdóttir, G.; Harris, T.B.; et al. Prevalence and prognosis of ischaemic and non-ischaemic myocardial fibrosis in older adults. Eur. Heart J. 2019, 40, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Ambale-Venkatesh, B.; Lima, J.A.C. Cardiac MRI: A central prognostic tool in myocardial fibrosis. Nat. Rev. Cardiol. 2015, 12, 18–29. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. JACC 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Rajiah, P.S.; François, C.J.; Leiner, T. Cardiac MRI: State of the Art. Radiology 2023, 307, e223008. [Google Scholar] [CrossRef]
- Beijnink, C.W.H.; van der Hoeven, N.W.; Konijnenberg, L.S.F.; Kim, R.J.; Bekkers, S.C.A.M.; Kloner, R.A.; Everaars, H.; El Messaoudi, S.; van Rossum, A.C.; van Royen, N.; et al. Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology 2021, 301, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, T.; Asch, F.M.; Davidson, B.; Delgado, V.; DeMaria, A.; Dilsizian, V.; Gaemperli, O.; Garcia, M.J.; Kamp, O.; Lee, D.C.; et al. Non-invasive imaging in coronary syndromes: Recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e6–e33. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- Jada, L.; Holtackers, R.J.; Martens, B.; Nies, H.M.J.M.; Van De Heyning, C.M.; Botnar, R.M.; Wildberger, J.E.; Ismail, T.F.; Razavi, R.; Chiribiri, A. Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance. Sci. Rep. 2024, 14, 5395. [Google Scholar] [CrossRef]
- Schieda, N.; Blaichman, J.I.; Costa, A.F.; Glikstein, R.; Hurrell, C.; James, M.; Maralani, P.J.; Shabana, W.; Tang, A.; Tsampalieros, A.; et al. Gadolinium-Based Contrast Agents in Kidney Disease: A Comprehensive Review and Clinical Practice Guideline Issued by the Canadian Association of Radiologists. Can. J. Kidney Health Dis. 2018, 5, 1–17. [Google Scholar] [CrossRef]
- Polacin, M.; Karolyi, M.; Eberhard, M.; Gotschy, A.; Baessler, B.; Alkadhi, H.; Kozerke, S.; Manka, R. Segmental strain analysis for the detection of chronic ischemic scars in non-contrast cardiac MRI cine images. Sci. Rep. 2021, 11, 12376. [Google Scholar] [CrossRef] [PubMed]
- Lenkinski, R.E.; Rofsky, N.M. Contrast Media–driven Anthropogenic Gadolinium: Knowns and Unknowns. Radiology 2024, 312, e240020. [Google Scholar] [CrossRef]
- Shu, H.; Xu, H.; Pan, Z.; Liu, Y.; Deng, W.; Zhao, R.; Sun, Y.; Wang, Z.; Yang, J.; Gao, H.; et al. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front. Endocrinol. 2024, 15, 1335899. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, K.; Qian, Y.; Zou, Z.; Jiang, M.; Pu, J. Recent Progresses in the Multimodality Imaging Assessment of Myocardial Fibrosis. Rev. Cardiovasc. Med. 2024, 25, 5. [Google Scholar] [CrossRef] [PubMed]
- Raisi-Estabragh, Z.; Izquierdo, C.; Campello, V.M.; Martin-Isla, C.; Jaggi, A.; Harvey, N.C.; Lekadir, K.; Petersen, S.E. Cardiac magnetic resonance radiomics: Basic principles and clinical perspectives. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 349–356. [Google Scholar] [CrossRef]
- Baeßler, B.; Engelhardt, S.; Hekalo, A.; Hennemuth, A.; Hüllebrand, M.; Laube, A.; Scherer, C.; Tölle, M.; Wech, T. Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging. Circ. Cardiovasc. Imaging 2024, 17, e015490. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, C.; Zhao, S.; Xie, L.; Tian, Y. Cardiac magnetic resonance radiomics for disease classification. Eur. Radiol. 2023, 33, 2312–2323. [Google Scholar] [CrossRef]
- Avard, E.; Shiri, I.; Hajianfar, G.; Abdollahi, H.; Kalantari, K.R.; Houshmand, G.; Kasani, K.; Bitarafan-Rajabi, A.; Deevband, M.R.; Oveisi, M.; et al. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Comput. Biol. Med. 2022, 141, 105145. [Google Scholar] [CrossRef] [PubMed]
- Baessler, B.; Mannil, M.; Oebel, S.; Maintz, D.; Alkadhi, H.; Manka, R. Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images. Radiology 2018, 286, 103–112. [Google Scholar] [CrossRef]
- Fahmy, A.S.; Rowin, E.J.; Arafati, A.; Al-Otaibi, T.; Maron, M.S.; Nezafat, R. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2022, 24, 40. [Google Scholar] [CrossRef]
- Lasode, J.; Chantaksinopas, W.; Khongwirotphan, S.; Chattranukulchai, P.; Vorasettakarnkij, Y.; Sriswasdi, S.; Tumkosit, M.; Rakvongthai, Y. Radiomics for differential diagnosis of ischemic and dilated cardiomyopathy using non-contrast-enhanced cine cardiac magnetic resonance imaging. Radiol. Med. 2025, 130, 650–661. [Google Scholar] [CrossRef]
- Pu, C.; Hu, X.; Lv, S.; Wu, Y.; Yu, F.; Zhu, W.; Zhang, L.; Fei, J.; He, C.; Ling, X.; et al. Identification of fibrosis in hypertrophic cardiomyopathy: A radiomic study on cardiac magnetic resonance cine imaging. Eur. Radiol. 2023, 33, 2301–2311. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [PubMed]
- Murali, S.; Ding, H.; Adedeji, F.; Qin, C.; Obungoloch, J.; Asllani, I.; Anazodo, U.; Ntusi, N.A.B.; Mammen, R.; Niendorf, T.; et al. Bringing MRI to low- and middle-income countries: Directions, challenges and potential solutions. NMR Biomed. 2024, 37, e4992. [Google Scholar] [CrossRef] [PubMed]
- Bendszus, M.; Laghi, A.; Munuera, J.; Tanenbaum, L.N.; Taouli, B.; Thoeny, H.C. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J. Magn. Reson. Imaging 2024, 60, 1774–1785. [Google Scholar] [CrossRef]

| Author (Year) | Country | Study Design (Retrospective/Prospective, Single vs. Multicentre) | Patient Population (Disease Type, Inclusion/Exclusion) | Sample Size | Reference Standard (Visual or Threshold-Based LGE/Cine) | Comparator | Primary Outcome |
|---|---|---|---|---|---|---|---|
| Avard et al. (2022) [21] | Iran | Retrospective, single-centre | Patients with prior MI—ischaemic cardiomyopathy. Non-contrast cine CMR | 52 MI cases 20 Control | Visual assessment of scar on LGE (reference) | Radiologist visual read | Diagnostic accuracy of cine radiomics vs. LGE for MI detection |
| Baessler et al. (2018) [22] | Switzerland, Germany | Retrospective, single-centre | Patients with subacute or chronic MI confirmed on LGE | 120 MI patients 60 Control | Visual assessment of scar on LGE (reference) | Radiologist visual read of cine MR images | Ability of cine texture analysis to identify subacute and chronic myocardial scar |
| Fahmy et al. (2022) [23] | USA, Canada, Italy | Retrospective, multicentre | HCM patients with and without LGE-defined scar | 759 patients (100 external validation) | Visual assessment of scar on LGE | Deep learning, combined radiomics + DL | Diagnostic accuracy of combined radiomics + DL cine model in identifying myocardial scar compared to LGE visual assessment |
| Lasode et al. (2025) [24] | Thailand | Retrospective, single-centre | Patients with ICM or DCM, with/without scar | 100 ICM (50 with scar, 50 without) 100 DCM (50 with scar, 50 without) | Visual assessment of scar and ICM vs. DCM by LGE | Radiologist visual read | Differentiation of ICM vs. DCM and scar detection |
| Pu et al. (2023) [25] | China | Retrospective, single-centre | HCM patients with/without fibrosis | 273 patients (Training n = 191, Test n = 82) | Visual assessment of scar by LGE | Radiologist visual read of LGE images | Diagnostic accuracy of cine radiomics model (alone and integrated with clinical variables) in detecting myocardial fibrosis, compared to the LGE visual standard. |
| Study (Year) | Scanner Vendor & Field Strength | Sequences Used (Cine bSSFP, LGE, T1, etc.) | Contrast Agent (Type, Dose) If Applicable | Slice Coverage | Spatial & Temporal Resolution | ECG Gating/Breath-Hold |
|---|---|---|---|---|---|---|
| Avard et al., Comput Biol Med (2022) [21] | Siemens MAGNETOM Aera, 1.5 T | Cine bSSFP short-axis for LV function; LGE used for reference/labels. | GBCA used for LGE (type/dose NR). | Cine short-axis stack from base to apex. | Pixel size 1.37–1.68 mm2; TR 43.35 ms; TE 1.22 ms; flip 65°; temporal resolution 30–40 ms. | Gated cine reported (ECG assumed but type NR); breath-hold NR. |
| Baessler et al., Radiology (2018) [22] | Philips Achieva, 1.5 T; 5-element cardiac phased-array coil | Cine bSSFP short-axis for LV function; LGE (IR-GRE) for scar; T2-weighted black-blood for oedema (exclusion). | Gadobutrol (Gadovist) 0.2 mmol/kg; LGE acquired ~15 min post-injection. | Cine: short-axis; LGE: whole LV stack. | NR in manuscript | Retrospective ECG-gated; breath-hold technique reported. |
| Fahmy et al., JCMR (2022) [23] | Multi-vendor 1.5 T (Philips Achieva; GE Signa Genesis/Excite; Siemens Sonata/Avanto/Symphony/Verio). External test set: Philips Achieva 1.5 T. | Breath-hold ECG-gated cine bSSFP short-axis; LGE present (for labels only). | GBCA for LGE (type/dose NR). | Short-axis cine stack; LGE matched slices. | TR 2.5–3.6 ms; TE 1.1–1.7 ms; flip 39–60°; pixel 0.6–1.4 mm; slice 8–10 mm; gap 8–10 mm; 17–30 cardiac phases. | Breath-hold; ECG-gated (gating mode NR). |
| Lasode et al., La Radiologia Medica (2025) [24] | Siemens MAGNETOM Aera 1.5 T; Siemens MAGNETOM Skyra 3.0 T; Siemens MAGNETOM Vida 3.0 T; 16-element cardiac coil | Cine SSFP in 2-, 3-, 4-chambers and multislice short-axis; LGE used to identify fibrosis (non-contrast cine for radiomics). | LGE performed; GBCA type/dose NR. | Short-axis multislice stack from base to apex; plus long-axis cine views. | FOV 300–400 mm; spatial 1.5 × 1.5 × 8 to 2.0 × 2.0 × 8 mm; TR 3.0–4.0 ms; TE 1.5–2.0 ms; flip 50–70°. | NR. |
| Pu et al., Eur Radiol (2023) [25] | GE Signa Excite HD 1.5 T or Siemens MAGNETOM Avanto 1.5 T; phased-array body coil | Retrospective ECG-gated cine bSSFP (short-axis whole LV + long-axis 2/3/4-ch); LGE for fibrosis. | Gadopentetate dimeglumine 0.15–0.2 mmol/kg; LGE acquired 8–10 min post-injection. | Cine: whole LV short-axis stack + long-axis views; LGE: short- and long-axis. | Cine: slice/gap 8/2 mm; TR 3.5 & 2.64 ms; TE 1.5 & 1.11 ms; flip 45° & 56°; FOV 360 × 360 & 340 × 276 mm; matrix 224 × 224 & 192 × 125 (recon 512 × 512 & 192 × 156); temporal res ~49 & 47.5 ms. LGE parameters also reported. | Retrospective ECG gating; breath-hold NR. |
| Study | Segmentation Method/Software | Myocardial Regions Analysed | Phase(s) | Feature Types Extracted | Feature Extraction Tools/Libraries | Preprocessing/Feature Processing | Feature Selection Methods | Modelling Approach | Validation Scheme | Software Versions |
|---|---|---|---|---|---|---|---|---|---|---|
| Avard 2022 (Computers in Biology & Medicine) [21] | Manual 3D segmentation of the whole LV myocardium at end-diastole by two experts in consensus. | Whole LV myocardium (3D VOI). | End-diastole. | 107 IBSI-compliant features: first-order, shape, and textures from GLCM, GLRLM, GLSZM, GLDM, NGTDM. | PyRadiomics (IBSI-compliant). | N4 bias-field correction; resampling to 1 × 1 × 1 mm (BSpline); discretisation to 64 gray bins; features Z-score normalised for univariate analysis. | MSVM-RFE ranking followed by Spearman correlation filtering (R2 > 0.80). | Classical ML—tested LR, LDA, QDA, ET, RF, AdaBoost, KNN, Naïve Bayes, Linear SVM, MLP; best performance with LR/SVM. | Internal 10-fold CV repeated ×5; hold-out test set. | 3D Slicer; PyRadiomics (IBSI-compliant, version NR); scikit-learn. |
| Baessler 2018 (Radiology) [22] | Manual 2D ROI of LV myocardium on a single mid-ventricular short-axis cine slice at end-systole; trabeculations & epicardium excluded. | ROI within LV myocardium; patients: slice with largest LGE extent; controls: mid-ventricular slice. | End-systole (single time-frame). | Texture analysis features (total 286 across 5 groups). Final selected features included first-order (Perc.01, Variance), GLCM (S [5] SumEntropy), and higher-order (Teta1, Wavelet WavEnHH.s-3). | MaZda v4.6 (Institute of Electronics, Technical University of Lodz). | Gray-level normalisation m ± 3σ prior to TA; intra-/inter-observer ICC filtering; dimension reduction with Boruta & RF-RFE; collinearity pruning. | ICC ≥ 0.75 to retain reproducible features; Boruta and RF-based recursive feature elimination; correlation matrix pruning (retain highest Gini). | Machine learning (multiple logistic regression). | Internal 10-fold cross-validation. | MaZda v4.6. |
| Fahmy 2022 (JCMR) [23] | LV borders automatically delineated in cvi42 then manually corrected; myocardium mask applied to SA cine slices. | Whole LV myocardium per short-axis slice. | End-diastole and End-systole. | 2D radiomics: 14 shape + 93 texture per image; computed on original + 9 filtered images → 944 features/image. | PyRadiomics v3.0.1. | Resampled to 1 × 1 mm in-plane; normalised size 256 × 256; intensities scaled 0–1. | LASSO to select top features (best model with 10). | Radiomics: Logistic Regression (L1); Deep learning: CNN + FCN; Hybrid: combined DL + radiomics probabilities. | Internal 5-fold CV; independent external test set from separate site/vendor. | cvi42; PyRadiomics v3.0.1; TensorFlow/Keras. |
| Lasode 2025 (La Radiologia Medica) [24] | Manual segmentation in 3D Slicer v4.11 of LV myocardium, LV blood pool, RV blood pool. | LV myocardium, LV blood pool, RV blood pool. | End-diastole and End-systole. | PyRadiomics features in four groups: first-order (18), shape (14), texture (73), filter-based (1092). | PyRadiomics v3.0.1. | Volume-wise Z-normalisation; resampling to 2 × 2 × 2 mm; gray-level discretisation to 30/40/60/120 bins. | Univariate AUC pre-ranking; RFECV with L2-LR. | Regularised logistic regression (L1/L2). | 20 rounds of 5-fold stratified CV. | 3D Slicer v4.11; PyRadiomics v3.0.1; scikit-learn. |
| Pu 2023 (European Radiology) [25] | Manual delineation in ITK-SNAP v3.8 of (i) entire LV myocardium and (ii) maximal-wall-thickness slice. | Entire LV myocardium and MWT slice (short-axis). | End-diastole. | PyRadiomics features: first-order (18), shape (14), texture (75) + high-order (LoG/wavelet etc.). | PyRadiomics v3.0.1. | Resampling to 1 × 1 × 4 mm; intensity min-max normalisation to 0–255; reproducibility screening. | ICC > 0.85; Boruta to rank/keep top 100. | Machine learning (XGBoost). | Stratified 5-fold CV; internal only. | ITK-SNAP v3.8; PyRadiomics v3.0.1; XGBoost. |
| Study | Primary Outcome | Cohort & Split/CV | Primary Metric (Model) | Other Metrics @ Operating Point | Comparator Performance (Visual/Threshold) | Statistical Tests for Comparison | External Validation? | Notes |
|---|---|---|---|---|---|---|---|---|
| Avard 2022 (Comput Biol Med) [21] | MI detection | n = 72 (MI = 52, healthy = 20); 10-fold cross-validation (multivariable models). | Best multivariable LR AUC 0.93 ± 0.03; SVM AUC 0.92 ± 0.05. | LR—Accuracy 0.86 ± 0.05; Recall 0.87 ± 0.10; Precision 0.93 ± 0.03; F1 0.90 ± 0.04. | None reported for cine; LGE used as reference labels. | Univariate p-values with FDR (q-values); no head-to-head vs. visual cine. | No (authors note small sample; no external set). | Also reported univariate best feature AUC 0.88 (M2DS). |
| Baessler 2018 (Radiology) [22] | Identify subacute and chronic myocardial scar | Patients with MI (120) vs. controls (60); 10-fold cross-validation; subgroup analyses for small vs. large scar. | AUC 0.92 (logistic regression on two features: Teta1 + Perc.01) for all MI vs. controls. | Sensitivity 86%, Specificity 82%; cross-val accuracy ≈0.84. | None reported for cine; reference standard was visual LGE. | Group tests (t-tests/ANOVA); model selection by AIC; ROC/AUC reported. | No (internal CV only). | Also reported AUC 0.92 (small scar) and 0.93 (large scar). |
| Fahmy 2022 (JCMR)—HCM [23] | Identification of myocardial scar in HCM | Development n = 600 (5 CV runs) → internal test n = 159; selected best models → external test n = 100 (independent site/vendor). | Internal test AUC: DL-Radiomics 0.81 ± 0.02 (higher than DL or Radiomics alone). External test AUC: 0.74. | Operating at sensitivity ≥0.90. Internal specificity ~0.42; External specificity 0.28 (DL-Rad). | No cine-visual comparator; reference standard = LGE presence by visual read. | DeLong tests for AUC (e.g., external: DL-Rad vs. Radiomics p = 0.006; vs. DL p = 0.27). | Yes—independent external cohort (n = 100). | Also report internal AUCs: Radiomics 0.75 ± 0.03, DL 0.76 ± 0.01; external AUCs: Radiomics 0.64, DL 0.71. |
| Lasode 2025 (La Radiologia Medica) [24] | Differentiation of ICM vs. DCM and scar detection | ICM vs. DCM (n = 100 each); within-group scar vs. no-scar (n = 50/50). Five-fold CV repeated 20× (≈100 repetitions). | Validation AUCs: ICM vs. DCM 0.915; ICM-Scar 0.956; DCM-Scar 0.936 (logistic regression). | NR for sensitivity/specificity; AUCs also reported as mean ± SD across repetitions (e.g., 0.918 ± 0.040). | Radiologist on cine: TPR/FPR≈ 0.87/0.32 (ICM vs. DCM), 0.76/0.16 (ICM-Scar), 0.36/0.22 (DCM-Scar). | Significant variation in AUC distributions across CV reps (p < 0.0001); no formal DeLong vs. radiologist. | No (repeated CV only). | Reference standard: LGE for scar; cine-radiomics compared with radiologist performance qualitatively. |
| Pu 2023 (European Radiology)—HCM [25] | Identification of myocardial scar in HCM | Training n = 191, Test n = 82 (internal split). | Test AUCs: R2 (radiomics whole-LV) 0.906; ICMR + R2 (integrated) 0.898. | ICMR + R2 test accuracy 89.02%, sensitivity 92.54%; R2 specificity 93.33%. | Comparator model = CMR-only; improvements shown by NRI/IDI; no cine-visual comparator. | Hosmer–Lemeshow calibration; NRI/IDI vs. CMR model; ROC analyses. | No (internal split; multi-centre cohort but no external hold-out). | Proposed strategy: use R2 to screen LGE(−), ICMR + R2 to flag LGE(+). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murray, C.P.; Temperley, H.C.; Doyle, R.S.; Khair, A.M.; Devitt, P.; John, A.; Matiullah, S. Diagnostic Accuracy of Radiomics Versus Visual or Threshold-Based Assessment for Myocardial Scar/Fibrosis Detection on Cardiac MRI: A Systematic Review. Hearts 2025, 6, 27. https://doi.org/10.3390/hearts6040027
Murray CP, Temperley HC, Doyle RS, Khair AM, Devitt P, John A, Matiullah S. Diagnostic Accuracy of Radiomics Versus Visual or Threshold-Based Assessment for Myocardial Scar/Fibrosis Detection on Cardiac MRI: A Systematic Review. Hearts. 2025; 6(4):27. https://doi.org/10.3390/hearts6040027
Chicago/Turabian StyleMurray, Cian Peter, Hugo C. Temperley, Robert S. Doyle, Abdullahi Mohamed Khair, Patrick Devitt, Amal John, and Sajjad Matiullah. 2025. "Diagnostic Accuracy of Radiomics Versus Visual or Threshold-Based Assessment for Myocardial Scar/Fibrosis Detection on Cardiac MRI: A Systematic Review" Hearts 6, no. 4: 27. https://doi.org/10.3390/hearts6040027
APA StyleMurray, C. P., Temperley, H. C., Doyle, R. S., Khair, A. M., Devitt, P., John, A., & Matiullah, S. (2025). Diagnostic Accuracy of Radiomics Versus Visual or Threshold-Based Assessment for Myocardial Scar/Fibrosis Detection on Cardiac MRI: A Systematic Review. Hearts, 6(4), 27. https://doi.org/10.3390/hearts6040027

