Hypertensive Left Ventricular Hypertrophy: Pathogenesis, Treatment, and Health Disparities
Abstract
1. Introduction
2. Cardiomyocyte Apoptosis in Hypertension
3. Advanced Approaches to Understanding and Managing LVH Progression
4. Clinical Implications
5. Health Disparities in Hypertensive LVH
6. Lifestyle Modification
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Why Is Hypertension an Important Issue in Low- and Middle-Income Countries? 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 23 March 2024).
- Oh, G.C.; Cho, H.-J. Blood pressure and heart failure. Clin. Hypertens. 2020, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W. Left ventricular dysfunction: Causes, natural history, and hope for reversal. Heart 2000, 84 (Suppl. 1), ii5–ii7. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.G.; Sharpe, N. Left ventricular remodelling after myocardial infarction: Pathophysiology and therapy. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, M.; Oktay, A.A.; Stewart, M.H.; Milani, R.V.; Ventura, H.O.; Lavie, C.J. Left Ventricular Hypertrophy and Hyper-tension. Prog. Cardiovasc. Dis. 2020, 63, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Katholi, R.E.; Couri, D.M. Left Ventricular Hypertrophy: Major Risk Factor in Patients with Hypertension: Update and Practical Clinical Applications. Int. J. Hypertens. 2011, 2011, 495349. [Google Scholar] [CrossRef] [PubMed]
- Sayin, B.Y.; Oto, A. Left Ventricular Hypertrophy: Etiology-Based Therapeutic Options. Cardiol. Ther. 2022, 11, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019, 16, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol. Rev. 2019, 99, 1765–1817. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, Z.E.; Cirka, H.A.; Billiar, K.L. Mechanical Regulation of Apoptosis in the Cardiovascular System. Ann. Biomed. Eng. 2020, 49, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Amgalan, D.; Chen, Y.; Kitsis, R.N. Death Receptor Signaling in the Heart. Circulation 2017, 136, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Anding, A.L.; Baehrecke, E.H. Autophagy in Cell Life and Cell Death. Curr. Top. Dev. Biol. 2015, 114, 67–91. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System [Updated 12 March 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470410/ (accessed on 26 April 2025).
- Chalise, U.; Hale, T.M. Fibroblasts under pressure: Cardiac fibroblast responses to hypertension and antihypertensive therapies. Am. J. Physiol. Circ. Physiol. 2024, 326, H223–H237. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Jiang, H.; Zou, Y.; Song, C.; Cao, K.; Chen, S.; Wu, Y.; Zhang, Z.; Geng, D.; Zhang, N.; et al. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol. Res. 2024, 206, 107281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cui, Y.; Lin, N.; Pang, S. Correlation of cardiomyocyte apoptosis with duration of hypertension, severity of hypertension and caspase-3 expression in hypertensive rats. Exp. Ther. Med. 2019, 17, 2741–2745. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.T.; Hughes, J.W.; Sanchez, P.A.; Perez, M.; Ouyang, D.; Ashley, E.A. Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy. Eur. Heart J. Digit. Health 2022, 3, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Shen, A.; Wu, X.; Shen, Z.; Chen, X.; Li, J.; Liu, L.; Lin, X.; Wu, M.; Chen, Y.; et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed. Pharmacother. 2021, 133, 111022. [Google Scholar] [CrossRef] [PubMed]
- Savira, F.; Cao, L.; Wang, I.; Yang, W.; Huang, K.; Hua, Y.; Jucker, B.M.; Willette, R.N.; Huang, L.; Krum, H.; et al. Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome. PLoS ONE 2017, 12, e0187459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Jiao, B.; Guo, W.-G.; Che, H.-L.; Yu, Z.-B. Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes. Mol. Cell. Endocrinol. 2010, 320, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hu, Z.; Li, B.; Wang, Z.; Chen, S. Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model. Mol. Cell. Biochem. 2018, 450, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Chen, W.; Yan, M.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure through mTOR and ER stress pathways. Mol. Med. Rep. 2020, 22, 2149–2157. [Google Scholar] [CrossRef]
- Ye, J.; Wang, R.; Wang, M.; Fu, J.; Zhang, Q.; Sun, G.; Sun, X.; Feng, Q. Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. Oxidative Med. Cell. Longev. 2021, 2021, 6643615. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmi, T.; Xu, X.; Tan, X.; Hulshoff, M.S.; Maamari, S.; Sossalla, S.; Zeisberg, M.; Zeisberg, E.M. Serelaxin alleviates cardiac fibrosis through inhibiting endothelial-to-mesenchymal transition via RXFP1. Theranostics 2020, 10, 3905–3924. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Van Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Cusick, A.S.; Thielemier, B. ACE Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Liu, L.; Shi, Q.; Liu, X.; Li, Y.; Li, X. Attenuation of Myocardial Fibrosis Using Molecular Hydrogen by Inhibiting the TGF-β Signaling Pathway in Spontaneous Hypertensive Rats. Am. J. Hypertens. 2021, 35, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-Y.; Ge, X.; Wang, Y.-L.; Ma, K.-L.; Liu, H.; Zhang, X.-L.; Liu, B.-C. Angiotensin Receptor Blockers Reduce Left Ventricular Hypertrophy in Dialysis Patients: A Meta-Analysis. Am. J. Med Sci. 2013, 345, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Mohiddin, S.A.; DiMarco, A.; Patel, V.; Savvatis, K.; Marelli-Berg, F.M.; Madhur, M.S.; Tomaszewski, M.; Maffia, P.; D’Acquisto, F.; et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020, 116, 1666–1687. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, A.; Scavone, C.; Rafaniello, C.; De Angelis, A.; Urbanek, K.; di Mauro, G.; Cappetta, D.; Berrino, L.; Rossi, F.; Capuano, A. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front. Pharmacol. 2021, 12, 667254. [Google Scholar] [CrossRef] [PubMed]
- SOLVD Investigators; Yusuf, S.; Pitt, B.; Davis, C.E.; Hood, W.B.; Cohn, J.N. Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. N. Engl. J. Med. 1991, 325, 293–302. [Google Scholar] [CrossRef] [PubMed]
- CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 1987, 316, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Braunwald, E.; Moyé, L.A.; Basta, L.; Brown, E.J.; Cuddy, T.E.; Davis, B.R.; Geltman, E.M.; Goldman, S.; Flaker, G.C.; et al. Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl. J. Med. 1992, 327, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Køber, L.; Torp-Pedersen, C.; Carlsen, J.E.; Bagger, H.; Eliasen, P.; Lyngborg, K.; Videbæk, J.; Cole, D.S.; Auclert, L.; Pauly, N.C.; et al. A Clinical Trial of the Angiotensin-Converting–Enzyme Inhibitor Trandolapril in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl. J. Med. 1995, 333, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Dahlöf, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002, 359, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Yang, Z.; Zhang, X.; Lin, Z.; Lu, H. Association Between Epicardial Adipose Tissue and Left Atrial and Ventricular Function in Patients With Heart Failure: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023, 48, 101979. [Google Scholar] [CrossRef] [PubMed]
- Gopal, D.P.; Okoli, G.N.; Rao, M. Re-thinking the inclusion of race in British hypertension guidance. J. Hum. Hypertens. 2021, 36, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Booth, J.N.; Diaz, K.M.; Sims, M.; Muntner, P.; Shimbo, D. Hypertension and alterations in left ventricular structure and geometry in African Americans: The Jackson Heart Study. J. Am. Soc. Hypertens. 2016, 10, 550–558.e10. [Google Scholar] [CrossRef] [PubMed]
- Phanzu, B.K.; Natuhoyila, A.N.; Vita, E.K.; Kabangu, J.-R.M.; Longo-Mbenza, B. Association between insulin resistance and left ventricular hypertrophy in asymptomatic, Black, sub-Saharan African, hypertensive patients: A case–control study. BMC Cardiovasc. Disord. 2021, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Jamerson, K.A.; Nasser, S.A.; Ferdinand, K.C. Cardiovascular Disease in Minorities: Unique Considerations: Hypertension in African and Hispanic Americans. In Cardiovascular Disease in Racial and Ethnic Minority Populations; Springer International Publishing: Cham, Switzerland, 2021; pp. 159–166. [Google Scholar]
- Katz, D.H.; Tahir, U.A.; Ngo, D.; Benson, M.D.; Gao, Y.; Shi, X.; Nayor, M.; Keyes, M.J.; Larson, M.G.; Hall, M.E.; et al. Multiomic Profiling in Black and White Populations Reveals Novel Candidate Pathways in Left Ventricular Hypertrophy and Incident Heart Failure Specific to Black Adults. Circ. Genom. Precis. Med. 2021, 14, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Norris, K. Hypertension treatment in African Americans: Physiology is less important than sociology. Clevel. Clin. J. Med. 2004, 71, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Helmer, A.; Slater, N.; Smithgall, S. A Review of ACE Inhibitors and ARBs in Black Patients With Hypertension. Ann. Pharmacother. 2018, 52, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Holt, H.K.; Gildengorin, G.; Karliner, L.; Fontil, V.; Pramanik, R.; Potter, M.B. Differences in Hypertension Medication Prescribing for Black Americans and Their Association with Hypertension Outcomes. J. Am. Board Fam. Med. 2022, 35, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Haynes, N.; Kaur, A.; Swain, J.; Joseph, J.J.; Brewer, L.C. Community-Based Participatory Research to Improve Cardiovascular Health Among US Racial and Ethnic Minority Groups. Curr. Epidemiol. Rep. 2022, 9, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Gaston, G. A Faith-Based Approach to Promote African American Healthy Heart Behaviors; Electronic Theses and Disserta-tions, Paper 369; Digital Commons@ ACU: Abilene, TX, USA, 2021; Available online: https://digitalcommons.acu.edu/etd/369 (accessed on 26 April 2025).
- Schoenthaler, A.M.; Lancaster, K.J.; Chaplin, W.; Butler, M.; Forsyth, J.; Ogedegbe, G. Cluster Randomized Clinical Trial of FAITH (Faith-Based Approaches in the Treatment of Hypertension) in Blacks. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004691. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int. J. Mol. Sci. 2021, 22, 3321. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Rastogi, S.; Chia, Y.C.; Siddique, S.; Turana, Y.; Cheng, H.M.; Sogunuru, G.P.; Tay, J.C.; Teo, B.W.; Wang, T.D.; et al. Non-pharmacological management of hypertension. J. Clin. Hypertens. 2021, 23, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Francisco, S.C.; Araújo, L.F.; Griep, R.H.; Chor, D.; Molina, M.D.C.B.; Mil, J.G.; Bensenor, I.M.; Matos, S.M.A.; Barreto, S.M.; Giatti, L. Adherence to the Dietary Approaches to Stop Hypertension (DASH) and hypertension risk: Results of the Longitudinal Study of Adult Health (ELSA-Brasil). Br. J. Nutr. 2020, 123, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Triantafyllou, A.; Chrysoula, L.; Mermigkas, F.; Chroni, V.; Dipla, K.; Gkaliagkousi, E.; Chourdakis, M. Impact of the Level of Adherence to the DASH Diet on Blood Pressure: A Systematic Review and Meta-Analysis. Metabolites 2023, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- O’connor, E.A.; Evans, C.V.; Ivlev, I.; Rushkin, M.C.; Thomas, R.G.; Martin, A.; Lin, J.S. Vitamin and Mineral Supplements for the Primary Prevention of Cardiovascular Disease and Cancer. JAMA 2022, 327, 2334–2347. [Google Scholar] [CrossRef] [PubMed]
- Miezah, D.; Wright, J.A.; Hayman, L.L. Community-Based Physical Activity Programs for Blood Pressure Management in African Americans: A Scoping Review. J. Phys. Act. Health 2024, 21, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lin, S.-H.; Jiang, L.; Liu, H. Clinical characteristics and risk factors of 267 patients having severe fever with thrombocytopenia syndrome–new epidemiological characteristics of fever with thrombocytopenia syndrome: Epidemiological characteristics of SFTS. Medicine 2022, 101, e31947. [Google Scholar] [CrossRef] [PubMed]
- D’andrea, A.; Carbone, A.; Ilardi, F.; Pacileo, M.; Savarese, C.; Sperlongano, S.; Di Maio, M.; Giallauria, F.; Russo, V.; Bossone, E.; et al. Effects of High Intensity Interval Training Rehabilitation Protocol after an Acute Coronary Syndrome on Myocardial Work and Atrial Strain. Medicina 2022, 58, 453. [Google Scholar] [CrossRef] [PubMed]
- Goessler, K.F.; Buys, R.; VanderTrappen, D.; Vanhumbeeck, L.; Cornelissen, V.A. A randomized controlled trial comparing home-based isometric handgrip exercise versus endurance training for blood pressure management. J. Am. Soc. Hypertens. 2018, 12, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Lightner, J.S.; Collinson, S.; Grimes, A. Cost Analysis of a Culturally Appropriate, Community-Delivered Intervention to Increase Physical Activity. Am. J. Heal. Promot. 2023, 37, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, P. Yoga and Cardiovascular Diseases—A Mechanistic Review. Int. J. Yoga 2024, 17, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Burlacu, A.; Brinza, C.; Popa, I.V.; Covic, A.; Floria, M. Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review. Diagnostics 2021, 11, 2198. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.H.; Myers, H.F.; Marwaha, K.; Rainforth, M.A.; Salerno, J.W.; Nidich, S.I.; Gaylord-King, C.; Alexander, C.N.; Norris, K.C. Stress Reduction in the Prevention of Left Ventricular Hypertrophy: A Randomized Controlled Trial of Transcendental Meditation and Health Education in Hypertensive African Americans. Ethn. Dis. 2019, 29, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.K.-Y.; Loke, A.Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: A review of the literature. Environ. Heal. Prev. Med. 2020, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mohol, P.; Ghosh, A.; Kulkarni, S. Blue Zone Dietary Patterns, Telomere Length Maintenance, and Longevity: A Critical Review. Nutr. Food Sci. 2025, 13. Available online: https://bit.ly/4leOdM4 (accessed on 23 March 2024).
- Gentile, F.; Orlando, G.; Montuoro, S.; Chen, Y.F.F.; Macefield, V.; Passino, C.; Giannoni, A.; Emdin, M. Treating heart failure by targeting the vagus nerve. Hear. Fail. Rev. 2024, 29, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Tagashira, H.; Abe, F.; Sakai, A.; Numata, T. Shakuyaku-Kanzo-To Prevents Angiotensin II-Induced Cardiac Hypertrophy in Neonatal Rat Ventricular Myocytes. Cureus 2024, 16, e74064. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Li, C.; Zhao, W.; Li, A.; Zhao, D.; Zhang, B.; Merlotti, D. Association between Sleep Duration and Left Ventricular Hypertrophy for Patients with Type 2 Diabetes Mellitus. Int. J. Endocrinol. 2023, 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gumz, M.L.; Shimbo, D.; Abdalla, M.; Balijepalli, R.C.; Benedict, C.; Chen, Y.; Earnest, D.J.; Gamble, K.L.; Garrison, S.R.; Gong, M.C.; et al. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension—2021 NHLBI Workshop Report. Hypertension 2023, 80, 503–522. [Google Scholar] [CrossRef] [PubMed]
Apoptotic Pathway | Initiator Caspase(s) | Executioner Caspase(s) | Function of Caspases |
---|---|---|---|
Intrinsic (Mitochondrial) | Caspase-9 | Caspase-3, Caspase-7 | Caspase-9 is activated by the apoptosome complex following cytochrome c release from mitochondria. It activates caspase-3 and -7, leading to DNA fragmentation and cell dismantling. |
Extrinsic (Death Receptor) | Caspase-8 | Caspase-3, Caspase-7 | Caspase-8 is activated upon ligand binding to death receptors (e.g., Fas, TNFR). It activates executioner caspases and cleaves Bid to tBid, linking to the intrinsic pathway. |
Convergent Point | -------------- | Caspase-3 | Caspase-3 is the key executioner caspase common to both pathways. It cleaves structural proteins, DNA repair enzymes, and nuclear components, resulting in controlled cell death. |
Intervention | Model Used | Apoptosis Reduction | Authors |
---|---|---|---|
Qingda Granule | Spontaneously Hypertensive Rats (SHR) | ↓ Caspase-3, ↑ Bax, ↑ Bcl-2 | Cheng, Y.; Shen A.; Wu, X.; Shen, Z.; Chen, X.; Li, J.; Liu, L.; Lin, X.; Wu, M.; Chen, Y.; Chu, J.; Peng, J. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway [18]. |
ASK1 Inhibitor | Angiotensin II-induced hypertrophy | ↓ JNK pathway activation, ↓ cleaved caspase-3 | Savira, F.; Cao, L.; Wang, I.; Yang, W.; Huang, K.; Hua, Y.; Jucker, B.M.; Willette, R.N.; Huang, L.; Krum, H.; Li, Z.; Fu, Q.; Wang, B.H. Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome [19]. |
Thyroxine (T4) | Isoproterenol-induced cardiac hypertrophy in rats | ↓ TUNEL+ cells, ↑ anti-apoptotic genes | Wang, Y.; Jiao, B.; Guo, W.; Che, H.L.; Yu, Z.B. Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes. Mol. Cell. Endocrinol. 2010, 320 (1–2), 67–75 [20]. |
Ivabradine | Pressure-overloaded rats | ↓ apoptotic index, ↑ mitochondrial stability | Yu, Y.; Hu, Z.; Li, B.; Wang, Z., Chen, S. Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model [21]. |
Rapamycin | Transverse aortic constriction (TAC) in mice | ↓ mTOR activity, ↓ cardiomyocyte death | Gao, G.; Chen, W.; Yan.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure through mTOR and ER stress pathways [22]. |
Hydroxysafflor Yellow A (HSYA) | Myocardial infarction in rats | ↓ Bax, ↑ Bcl-2, ↓ myocardial injury | Ye, J.; Wang, R.; Wang, M.; Fu, J.; Zhang, Q.; Sun, G.; Sun, X. Hydroxysafflor yellow a ameliorates myocardial ischemia reperfusion injury by inhibiting apoptosis and oxidative stress [23]. |
Serelaxin | Ischemia–reperfusion injury in mice | ↓ Caspase-9 and -3 activity, ↓ TUNEL staining | Wilhelmi, T.; Xu, X.; Tan, X.; Hulshoff, M.S.; Maamari, S.; Sossalla, S.; Zeisberg, M.; Zeisberg, E.M. Serelaxin alleviates cardiac fibrosis through inhibiting endothelial-to-mesenchymal transition via Notch signaling pathway [24]. |
Clinical Trial | Number of Participants | Treatments Arms | Key Outcomes | References |
---|---|---|---|---|
Study of Left Ventricular Dysfunction (SOLVD) | n = 2569 patients with congestive heart failure symptoms and reduced left ventricular ejection fraction (≤35%). 4228 asymptomatic patients who had reduced left ventricular function but no overt heart failure symptoms at enrollment. | Enalapril versus Placebo | Enalapril reduced mortality by approximately 16% compared to placebo. Fewer hospitalizations due to heart failure were seen among enalapril-treated patients. Long-term therapy with enalapril improved survival and reduced hospitalization, a milestone in the management of heart failure. | Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JThN. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure [31]. |
Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) 1987 | 253 patients with severe CHF, classified as New York Heart Association (NYHA) Class IV | 253 patients with severe CHF, classified as New York Heart Association (NYHA) Class IV | Enalapril to conventional therapy can reduce mortality and improve symptoms. It was suggested that enalapril therapy should be taken in low doses, specifically in high-risk individuals. | CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med. 1987 Jun 4;316(23):1429–35. doi: 10.1056/NEJM198706043162301 [32]. |
Survival and Ventricular Enlargement (SAVE) | 2231 patients aged 21 to 80 years, with a left ventricular ejection fraction (LVEF) of less than 40%, enrolled within 3 to 16 days post-myocardial infarction. | Captopril | Treatment with captopril caused a 19% reduction in all-cause mortality from placebo (p = 0.019). In the patients on captopril, there was a strong reduction in the number of major cardiovascular events. Relative risk reduction of 37% (p < 0.001) for severe heart failure. Hospitalization for heart failure was 22% relative risk reduction (p = 0.019). Recurrent myocardial infarction was 25% relative risk reduction (p = 0.015). | Pfeffer MA, Braunwald E, Moyé LA et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction [33]. |
Trandolapril Cardiac Evaluation (TRACE) | 6676 patients across 27 centres in Denmark, enrolling 1749 patients with an echocardiographic ejection fraction (EF) of less than 35% | Trandolapril | Trandolapril administration led to a substantial 22% reduction in all-cause mortality compared with placebo (relative risk [RR] = 0.78; 95% confidence interval [CI], 0.67–0.91; p = 0.001). There was a 25% reduced cardiovascular cause mortality in the trandolapril arm (RR = 0.75; 95% CI, 0.63–0.89; p = 0.001). Trandolapril decreased the incidence of severe heart failure (RR = 0.71; p = 0.003). While recurrent AMI events were reduced, the reduction was not statistically significant (RR = 0.86; 95% CI, 0.66–1.13; p = 0.29). | Køber L, Torp-Pedersen C, Carlsen JE et al. A clinical trial of the angiotensin-converting–enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction [34]. |
Losartan Intervention for Endpoint (LIFE) 2002 | 9193 patients aged 55 to 80 years with essential hypertension and electrocardiographically confirmed LVH. | Losartan 50 mg (n = 457) Atenolol 50 mg (n = 459) | Losartan demonstrated a relative risk reduction of 13% for the composite endpoint of cardiovascular death, myocardial infarction, or stroke compared with atenolol (p = 0.021). The losartan group had a notable 25% decrease in the risk of stroke (p = 0.001). Losartan was also associated with a 25% reduced incidence of new-onset diabetes mellitus compared to atenolol. Losartan-treated patients experienced greater regression of LVH by electrocardiographic criteria compared with atenolol-treated patients. | Dahlöf B, Devereux RB, Kjeldsen SE et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet [35]. |
Studies | Non-Clinical Approaches | Key Benefits |
---|---|---|
D’Andrea, A.; Carbone, A., Ilardi, F.; Pacileo, M.; Savarese, C.; Sperlongano, S.; Di Maio, M.; Giallauria, F.; Russo, V.; Bossone, E.; Picano, E. Effects of High Intensity Interval Training Rehabilitation Protocol after an Acute Coronary Syndrome on Myocardial Work and Atrial Strain [55]. | High-Intensity Interval Training (HIIT) | Reverse adverse cardiac remodelling, improve LV function, myocardial efficiency and aerobic capacity. |
Goessler, K.F.; Buys, R.; VanderTrappen, D.; Vanhumbeeck, L.; Cornelissen, V.A.J. A randomized controlled trial comparing home-based isometric handgrip exercise versus endurance training for blood pressure management [56]. | Isometric Resistance Training | Isometric Resistance Training is a viable and effective strategy for reducing blood pressure and may be beneficial for both arterial stiffness and left ventricular function. |
Lightner, J.S.; Collinson, S.; Grimes, A. Cost Analysis of a Culturally Appropriate, Community-Delivered Intervention to Increase Physical Activity [57]. | Dance-Based Aerobic Exercise | Culturally tailored cardiovascular intervention for ethnic minority populations. |
Murugesan, P. Yoga and Cardiovascular Diseases—A Mechanistic Review [58]. | Yoga & Tai Chi | Lowers sympathetic nervous system activity and improves autonomic function. |
Burlacu, A.; Brinza, C.; Popa, IV.; Covic, A.; Floria, M. Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review [59]. | HRV Training | Reduces stress and cardiac workload. |
Schneider, R.H.; Myers, H.F.; Marwaha, K.; Rainforth, M.A.; Salerno J.W.; Nidich, S.I.; Gaylord-King, C.; Alexander, C.N.; Norris, K.C. Stress Reduction in the Prevention of Left Ventricular Hypertrophy: A Randomized Controlled Trial of Transcendental Meditation and Health Education in Hypertensive African Americans [60]. | Transcendental Meditation | Stress reduction with TM was effective in preventing LVMI progression and thus may prevent LVH. |
Yau, K.K.; Loke, A.Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: a review of the literature [61]. | Green Prescriptions & Nature Therapy | Reduces stress hormones and improves cardiovascular function. |
Mohol, P.; Ghosh, A.; Kulkarni, S. Blue Zone Dietary Patterns, Telomere Length Maintenance, and Longevity: A Critical Review [62]. | Blue Zones-Inspired Lifestyle Adaptations | Promotes longevity through strong social networks, natural movement, and stress reduction, which correlates with lower rates of hypertension and cardiovascular disease. |
Gentile, F.; Orlando, G.; Montuoro S; Ferrari Chen YF; Macefield V.; Passino, C.; Giannoni, A.; Emdin M. Treating heart failure by targeting the vagus nerve [63]. | Transcutaneous Vagus Nerve Stimulation (tVNS) | Cardio-vagal baroreflex gain in CHF patients with reduced LVEF, without causing discomfort or physiologic disturbance and reduces cardiac stress. |
Tagashira, H.; Abe, F.; Sakai, A.; Numata T. Shakuyaku-Kanzo-To Prevents Angiotensin II-Induced Cardiac Hypertrophy in Neonatal Rat Ventricular Myocytes [64]. | Acupuncture & Traditional Chinese Medicine (TCM) | Modulates autonomic function and reduces LVH-related complications. |
Mu, L.; Li, C.; Zhao, W.; Li, A.; Zhao, D.; Zhang, B. Association between Sleep Duration and Left Ventricular Hypertrophy for Patients with Type 2 Diabetes Mellitus [65]. | Optimizing Sleep Patterns | Reduces cardiac remodelling and hypertension-related stress. |
Gumz, M.L.; Shimbo, D.; Abdalla, M.; Balijepalli, R.C.; Benedict, C.; Chen, Y.; Earnest, D.J.; Gamble, K.L.; Garrison, SR; Gong, M.C.; Hogenesch, J.B. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension—2021 NHLBI Workshop Report [66]. | Circadian Rhythm Regulation | Supports blood pressure control through synchronized sleep and eating patterns. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomlinson, S. Hypertensive Left Ventricular Hypertrophy: Pathogenesis, Treatment, and Health Disparities. Hearts 2025, 6, 18. https://doi.org/10.3390/hearts6030018
Tomlinson S. Hypertensive Left Ventricular Hypertrophy: Pathogenesis, Treatment, and Health Disparities. Hearts. 2025; 6(3):18. https://doi.org/10.3390/hearts6030018
Chicago/Turabian StyleTomlinson, Sherldine. 2025. "Hypertensive Left Ventricular Hypertrophy: Pathogenesis, Treatment, and Health Disparities" Hearts 6, no. 3: 18. https://doi.org/10.3390/hearts6030018
APA StyleTomlinson, S. (2025). Hypertensive Left Ventricular Hypertrophy: Pathogenesis, Treatment, and Health Disparities. Hearts, 6(3), 18. https://doi.org/10.3390/hearts6030018