Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics
Abstract
1. Introduction
2. MD Modeling
2.1. MD Modeling of GQDs
2.2. MD Modeling of Epoxy
2.3. Mixing of Epoxy and GQD
2.4. Crosslinking of Epoxy
2.5. Thermal Simulations
2.6. Thermal Property Calculations
3. Results and Discussion
4. Conclusions
- 1.
- Functionalized GQDs increase the Tg of the epoxy nanocomposite due to restricted network mobility and relaxation at the glass transition.
- 2.
- The oxygen-based functionalization groups on GQD demonstrate the highest increases of 16% in the Tg, whereas amine- and carboxyl-functionalized GQDs are predicted to increase the epoxy Tg by approximately 7%.
- 3.
- The GQDs demonstrate that the effect of GQDs on the CTE of the epoxy both below and above Tg is statistically insignificant, except for s4OH-GQD, which is predicted to increase the CTE of the epoxy below Tg by 4%.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, M.R. Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2012, 52, 229–233. [Google Scholar] [CrossRef]
- Bamane, S.S.; Gaikwad, P.S.; Radue, M.S.; Gowtham, S.; Odegard, G.M. Wetting Simulations of High-Performance Polymer Resins on Carbon Surfaces as a Function of Temperature Using Molecular Dynamics. Polymers 2021, 13, 2162. [Google Scholar] [CrossRef]
- Patil, S.U.; Radue, M.S.; Pisani, W.A.; Deshpande, P.; Xu, H.; Al Mahmud, H.; Dumitrică, T.; Odegard, G.M. Interfacial characteristics between flattened CNT stacks and polyimides: A molecular dynamics study. Comput. Mater. Sci. 2020, 185, 109970. [Google Scholar] [CrossRef]
- Deshpande, P.P.; Radue, M.S.; Gaikwad, P.; Bamane, S.; Patil, S.U.; Pisani, W.A.; Odegard, G.M. Prediction of the Interfacial Properties of High-Performance Polymers and Flattened CNT-Reinforced Composites Using Molecular Dynamics. Langmuir 2021, 37, 11526–11534. [Google Scholar] [CrossRef]
- Iredale, R.J.; Ward, C.; Hamerton, I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Prog. Polym. Sci. 2017, 69, 1–21. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, F.; van Sittert, C.G.C.E.; Lu, Q. Role of Intrinsic Factors of Polyimides in Glass Transition Temperature: An Atomistic Investigation. J. Phys. Chem. B 2019, 123, 8569–8579. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Tungare, A.V.; Martin, G.C. Glass transition temperatures in bismaleimide-based resin systems. Polym. Eng. Sci. 1993, 33, 614–621. [Google Scholar] [CrossRef]
- Loos, M. Chapter 2—Composites. In Carbon Nanotube Reinforced Composites; Loos, M., Ed.; William Andrew Publishing: Oxford, UK, 2015; pp. 37–72. [Google Scholar]
- McKeen, L. 6—Polyimides. In The Effect of Sterilization on Plastics and Elastomers, 3rd ed.; McKeen, L., Ed.; William Andrew Publishing: Boston, MA, USA, 2012; pp. 169–182. [Google Scholar]
- Wang, D.; Zhao, L.; Yang, H.; Yue, C.E.; Li, H.; Xiao, W.; Liu, C.; Qu, C. High temperature and toughened bismaleimide structural film adhesive for high performance CFRP bonding over 300 °C. Polym. Degrad. Stab. 2022, 204, 110125. [Google Scholar] [CrossRef]
- Kirmani, M.H.; Ramachandran, J.; Arias-Monje, P.J.; Gulgunje, P.; Kumar, S. The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites. Polym. Eng. Sci. 2022, 62, 1187–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Goh, S.H.; Chung, T.-S. Miscibility study of Torlon® polyamide-imide with Matrimid® 5218 polyimide and polybenzimidazole. Polymer 2007, 48, 2901–2909. [Google Scholar] [CrossRef]
- Szeluga, U.; Pusz, S.; Kumanek, B.; Olszowska, K.; Kobyliukh, A.; Trzebicka, B. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites—A review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 152–187. [Google Scholar] [CrossRef]
- Wei, J.; Vo, T.; Inam, F. Epoxy/graphene nanocomposites—Processing and properties: A review. RSC Adv. 2015, 5, 73510–73524. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, J.; Li, N.; Ma, H.; Shi, M.; Yan, B.; Huang, W.; Wang, W.; Ye, M. Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials. Compos. Sci. Technol. 2010, 70, 2176–2182. [Google Scholar] [CrossRef]
- Ribeiro, H.; Silva, W.M.; Rodrigues, M.-T.F.; Neves, J.C.; Paniago, R.; Fantini, C.; Calado, H.D.R.; Seara, L.M.; Silva, G.G. Glass transition improvement in epoxy/graphene composites. J. Mater. Sci. 2013, 48, 7883–7892. [Google Scholar] [CrossRef]
- Chen, L.; Chai, S.; Liu, K.; Ning, N.; Gao, J.; Liu, Q.; Chen, F.; Fu, Q. Enhanced Epoxy/Silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface. ACS Appl. Mater. Interfaces 2012, 4, 4398–4404. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, D.S. Effects of an aminosilane and a tetra-functional epoxy on the physical properties of di-functional epoxy/graphene nanoplatelets nanocomposites. Polym. Eng. Sci. 2014, 54, 969–976. [Google Scholar] [CrossRef]
- Putz, K.W.; Palmeri, M.J.; Cohn, R.B.; Andrews, R.; Brinson, L.C. Effect of Cross-Link Density on Interphase Creation in Polymer Nanocomposites. Macromolecules 2008, 41, 6752–6756. [Google Scholar] [CrossRef]
- Yang, Z.; McElrath, K.; Bahr, J.; D’Souza, N.A. Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite. Compos. Part B Eng. 2012, 43, 2079–2086. [Google Scholar] [CrossRef]
- Gobi, N.; Vijayakumar, D.; Keles, O.; Erogbogbo, F. Infusion of Graphene Quantum Dots to Create Stronger, Tougher, and Brighter Polymer Composites. ACS Omega 2017, 2, 4356–4362. [Google Scholar] [CrossRef]
- Keleş, Ö.; Deshpande, P.P. Mechanical behavior of graphene quantum dot epoxy nanocomposites: A molecular dynamics study. Mater. Lett. 2024, 362, 136206. [Google Scholar] [CrossRef]
- Seibert, J.R.; Keleş, Ö.; Wang, J.; Erogbogbo, F. Infusion of graphene quantum dots to modulate thermal conductivity and dynamic mechanical properties of polymers. Polymer 2019, 185, 121988. [Google Scholar] [CrossRef]
- Deshpande, P.P.; Chan-Jobe, R.; Kemppainen, J.; Odegard, G.M.; Keles, O. Optimizing Epoxy Nanocomposites with Oxidized Graphene Quantum Dots for Superior Mechanical Performance: A Molecular Dynamics Approach. ACS Omega 2025, 10, 14209–14220. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.; Ornaghi, H.L., Jr.; Monticeli, F.M.; Romanzini, D. Effect of the Graphene Quantum Dot Content on the Thermal, Dynamic-Mechanical, and Morphological Properties of Epoxy Resin. Polymers 2023, 15, 4531. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Strachan, A. Molecular scale simulations on thermoset polymers: A review. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 103–122. [Google Scholar] [CrossRef]
- Bamane, S.S.; Deshpande, P.P.; Patil, S.U.; Maiaru, M.; Odegard, G.M. Evolution of Physical, Thermal, and Mechanical Properties of Poly(methyl Methacrylate)-Based Elium Thermoplastic Polymer During Polymerization. J. Phys. Chem. C 2024, 128, 15639–15648. [Google Scholar] [CrossRef]
- Bamane, S.S.; Jakubinek, M.B.; Kanhaiya, K.; Ashrafi, B.; Heinz, H.; Odegard, G.M. Boron Nitride Nanotubes: Force Field Parameterization, Epoxy Interactions, and Comparison with Carbon Nanotubes for High-Performance Composite Materials. ACS Appl. Nano Mater. 2023, 6, 3513–3524. [Google Scholar] [CrossRef]
- Sachdeva, G.; Patil, S.U.; Bamane, S.S.; Deshpande, P.P.; Pisani, W.A.; Odegard, G.M.; Pandey, R. Mechanical response of polymer/BN composites investigated by molecular dynamics method. J. Mater. Res. 2022, 37, 4533–4543. [Google Scholar] [CrossRef]
- Al Mahmud, H.; Radue, M.S.; Pisani, W.A.; Odegard, G.M. Computational Modeling of Hybrid Carbon Fiber/Epoxy Composites Reinforced with Functionalized and Non-Functionalized Graphene Nanoplatelets. Nanomaterials 2021, 11, 2919. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ‘t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Heinz, H.; Lin, T.-J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef]
- Odegard, G.M.; Patil, S.U.; Deshpande, P.P.; Kanhaiya, K.; Winetrout, J.J.; Heinz, H.; Shah, S.P.; Maiaru, M. Molecular Dynamics Modeling of Epoxy Resins Using the Reactive Interface Force Field. Macromolecules 2021, 54, 9815–9824. [Google Scholar] [CrossRef]
- Odegard, G.M.; Patil, S.U.; Gaikwad, P.S.; Deshpande, P.; Krieg, A.S.; Shah, S.P.; Reyes, A.; Dickens, T.; King, J.A.; Maiaru, M. Accurate predictions of thermoset resin glass transition temperatures from all-atom molecular dynamics simulation. Soft Matter 2022, 18, 7550–7558. [Google Scholar] [CrossRef]
- Kashmari, K.; Al Mahmud, H.; Patil, S.U.; Pisani, W.A.; Deshpande, P.; Maiaru, M.; Odegard, G.M. Multiscale Process Modeling of Semicrystalline PEEK for Tailored Thermomechanical Properties. ACS Appl. Eng. Mater. 2023, 1, 3167–3177. [Google Scholar] [CrossRef]
- Gaikwad, P.; Krieg, A.; Deshpande, P.; Patil, S.; King, J.; Maiaru, M.; Odegard, G. Understanding the Origin of the Low Cure Shrinkage of Polybenzoxazine Resin by Computational Simulation. ACS Appl. Polym. Mater. 2021, 3, 6407–6415. [Google Scholar] [CrossRef]
- Pisani, W.A.; Radue, M.S.; Patil, S.U.; Odegard, G.M. Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers. Compos. Part B Eng. 2021, 211, 108672. [Google Scholar] [CrossRef]
- Evans, D.A. History of the Harvard ChemDraw Project. Angew. Chem. Int. Ed. 2014, 53, 11140–11145. [Google Scholar] [CrossRef] [PubMed]
- Gissinger, J.R.; Jensen, B.D.; Wise, K.E. REACTER: A Heuristic Method for Reactive Molecular Dynamics. Macromolecules 2020, 53, 9953–9961. [Google Scholar] [CrossRef]
- Gissinger, J.R.; Jensen, B.D.; Wise, K.E. Modeling chemical reactions in classical molecular dynamics simulations. Polymer 2017, 128, 211–217. [Google Scholar] [CrossRef]
- Gissinger, J.R.; Jensen, B.D.; Wise, K.E. Molecular modeling of reactive systems with REACTER. Comput. Phys. Commun. 2024, 304, 109287. [Google Scholar] [CrossRef]
- Patil, S.U.; Shah, S.P.; Olaya, M.; Deshpande, P.P.; Maiaru, M.; Odegard, G.M. Reactive Molecular Dynamics Simulation of Epoxy for the Full Cross-Linking Process. ACS Appl. Polym. Mater. 2021, 3, 5788–5797. [Google Scholar] [CrossRef]
- Littell Justin, D.; Ruggeri Charles, R.; Goldberg Robert, K.; Roberts Gary, D.; Arnold William, A.; Binienda Wieslaw, K. Measurement of Epoxy Resin Tension, Compression, and Shear Stress–Strain Curves over a Wide Range of Strain Rates Using Small Test Specimens. J. Aerosp. Eng. 2008, 21, 162–173. [Google Scholar] [CrossRef]
- Gilat, A.; Goldberg Robert, K.; Roberts Gary, D. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading. J. Aerosp. Eng. 2007, 20, 75–89. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Z.; Gonnet, P.; Liao, Y.H.; Wang, B.; Zhang, C. Effect of Nanotube Functionalization on the Coefficient of Thermal Expansion of Nanocomposites. Adv. Funct. Mater. 2007, 17, 87–92. [Google Scholar] [CrossRef]
- Kemppainen, J.; Gissinger, J.R.; Gowtham, S.; Gowtham, G.M. LUNAR: Automated Input Generation and Analysis for Reactive LAMMPS Simulations. J. Chem. Inf. Model. 2024, 64, 5108–5126. [Google Scholar]
Type of GQD | Site of Functionalization | Functional Group | Number of Functional Groups | Number of Atoms | ||||
---|---|---|---|---|---|---|---|---|
C | H | N | O | Total | ||||
GQD | - | - | - | 96 | 24 | - | - | 120 |
s4OH-GQD | Surface | Hydroxyl | 4 | 96 | 28 | - | 4 | 128 |
s4O-GQD | Surface | Epoxide | 4 | 96 | 24 | - | 4 | 124 |
e4N-GQD | Edge | Amine | 4 | 96 | 28 | 4 | - | 128 |
e6N-GQD | Edge | Amine | 6 | 96 | 30 | 6 | - | 130 |
e4COOH-GQD | Edge | Carboxyl | 4 | 100 | 24 | - | 8 | 132 |
s4O-e4COOH-GQD | Surface and edge | Epoxide and carboxyl | 4 and 4 | 100 | 24 | - | 12 | 136 |
Material | Crosslinking Density (%) | IFF (g/cc) | ReaxFF * (g/cc) | Experiment (g/cc) |
---|---|---|---|---|
Neat epoxy | 82 ± 4 | 1.189 ± 0.007 | 1.226 ± 0.003 | 1.19–1.2 # |
GQD–epoxy | 91 ± 3 | 1.194 ± 0.007 | 1.226 ± 0.001 | NA |
s4O-GQD–epoxy | 92 ± 2 | 1.198 ± 0.005 | 1.235 ± 0.002 | NA |
s4OH-GQD–epoxy | 90 ± 1 | 1.193 ± 0.008 | 1.233 ± 0.003 | NA |
e4N-GQD–epoxy | 85 ± 4 | 1.191 ± 0.007 | 1.230 ± 0.010 | NA |
e6N-GQD–epoxy | 84 ± 4 | 1.192 ± 0.012 | 1.240 ± 0.010 | NA |
eCOOH-GQD–epoxy | 85 ± 1 | 1.192 ± 0.005 | 1.233 ± 0.003 | NA |
s4O-e4COOH-GQD–epoxy | 85 ± 1 | 1.194 ± 0.004 | 1.229 ± 0.002 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamane, S.S.; Keles, O. Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics. Appl. Nano 2025, 6, 15. https://doi.org/10.3390/applnano6030015
Bamane SS, Keles O. Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics. Applied Nano. 2025; 6(3):15. https://doi.org/10.3390/applnano6030015
Chicago/Turabian StyleBamane, Swapnil S., and Ozgur Keles. 2025. "Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics" Applied Nano 6, no. 3: 15. https://doi.org/10.3390/applnano6030015
APA StyleBamane, S. S., & Keles, O. (2025). Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics. Applied Nano, 6(3), 15. https://doi.org/10.3390/applnano6030015