Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultrasonic Coating
2.2. Coin Cell Assembly
3. Results
3.1. Scanning Electron Microscopy Analysis
3.2. Electrochemical Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagberg, J.; Maples, H.A.; Alvim, K.S.P.; Xu, J.; Johannisson, W.; Bismarck, A.; Zenkert, D.; Lindbergh, G. Lithium Iron Phosphate Coated Carbon Fiber Electrodes for Structural Lithium Ion Batteries. Compos. Sci. Technol. 2018, 162, 235–243. [Google Scholar] [CrossRef]
- Qiao, Z.; Bian, K.; Ding, C.; Zhao, Y. Recent Progress of Carbon-Fiber-Based Electrode Materials for Energy Storage. Diam. Relat. Mater. 2023, 138, 110208. [Google Scholar]
- Jin, T.; Singer, G.; Liang, K.; Yang, Y. Structural Batteries: Advances, Challenges and Perspectives. Mater. Today 2023, 62, 151–167. [Google Scholar]
- Son, Y.; Cha, H.; Jo, C.; Groombridge, A.S.; Lee, T.; Boies, A.; Cho, J.; De Volder, M. Reliable Protocols for Calculating the Specific Energy and Energy Density of Li-Ion Batteries. Mater. Today Energy 2021, 21, 100838. [Google Scholar] [CrossRef]
- Kwasi-Effah, C.C.; Rabczuk, T. Dimensional Analysis and Modelling of Energy Density of Lithium-Ion Battery. J. Energy Storage 2018, 18, 308–315. [Google Scholar] [CrossRef]
- Johannisson, W.; Zenkert, D.; Lindbergh, G. Model of a Structural Battery and Its Potential for System Level Mass Savings. Multifunct. Mater. 2019, 2, 035002. [Google Scholar] [CrossRef]
- Scholz, A.E.; Hermanutz, A.; Hornung, M. Feasibility Analysis and Comparative Assessment of Structural Power Technology in All-Electric Composite Aircraft. In Proceedings of the Deutschen Luft- und Raumfahrtkongress, Friedrichshafen, Germany, 5 September 2018. [Google Scholar]
- Chen, X.; Xiang, Y.; Wu, J.; Wu, F.; Mei, S.; Ye, X.; Pan, H.; Xiang, Y.; Liu, X.; Li, F.; et al. Rigid Structural Battery: Progress and Outlook. J. Energy Storage 2024, 91, 112070. [Google Scholar] [CrossRef]
- Thomas, J.P.; Qidwai, S.M.; Pogue, W.R.; Pham, G.T. Multifunctional Structure-Battery Composites for Marine Systems. J. Compos. Mater. 2013, 47, 5–26. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lanceros-Méndez, S.; Costa, C.M. Electrode Fabrication Process and Its Influence in Lithium-Ion Battery Performance: State of the Art and Future Trends. Electrochem. Commun. 2022, 135, 107210. [Google Scholar] [CrossRef]
- Choi, J.; Zabihi, O.; Ahmadi, M.; Naebe, M. Advancing Structural Batteries: Cost-Efficient High-Performance Carbon Fiber-Coated LiFePO4 Cathodes. RSC Adv. 2023, 13, 30633–30642. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.S.; Xu, J.; Xia, Z.; Sun, J.; Asp, L.E.; Palermo, V. Electrophoretic Coating of LiFePO4/Graphene Oxide on Carbon Fibers as Cathode Electrodes for Structural Lithium Ion Batteries. Compos. Sci. Technol. 2021, 208, 108768. [Google Scholar] [CrossRef]
- Bouton, K.; Chen, B.; Zenkert, D.; Lindbergh, G. Structural Positive Electrodes for Multifunctional Composite Materials. In Proceedings of the 2019 International Conference on Composite Materials, Melbourne, Australia, 11–16 August 2019; Volume 2019. [Google Scholar]
- Petrushenko, D.; Rahmati, Z.; Barazanchy, D.; De Backer, W.; Mustain, W.E.; White, R.E.; Ziehl, P.; Coman, P.T. Dip-Coating of Carbon Fibers for the Development of Lithium Iron Phosphate Electrodes for Structural Lithium-Ion Batteries. Energy Fuels 2023, 37, 711–723. [Google Scholar] [CrossRef]
- Moyer, K.; Boucherbil, N.A.; Zohair, M.; Eaves-Rathert, J.; Pint, C.L. Polymer Reinforced Carbon Fiber Interfaces for High Energy Density Structural Lithium-Ion Batteries. Sustain. Energy Fuels 2020, 4, 2661–2668. [Google Scholar] [CrossRef]
- Moyer, K.; Meng, C.; Marshall, B.; Assal, O.; Eaves, J.; Perez, D.; Karkkainen, R.; Roberson, L.; Pint, C.L. Carbon Fiber Reinforced Structural Lithium-Ion Battery Composite: Multifunctional Power Integration for CubeSats. Energy Storage Mater. 2020, 24, 676–681. [Google Scholar] [CrossRef]
- Yücel, Y.D.; Adolfsson, E.; Dykhoff, H.; Pettersson, J.; Trey, S.; Wysocki, M.; Zenkert, D.; Wreland Lindström, R.; Lindbergh, G. Powder-Impregnated Carbon Fibers with Lithium Iron Phosphate as Positive Electrodes in Structural Batteries. Compos. Sci. Technol. 2023, 241, 110153. [Google Scholar] [CrossRef]
- Yücel, Y.D.; Zenkert, D.; Lindström, R.W.; Lindbergh, G. LiFePO4-Coated Carbon Fibers as Positive Electrodes in Structural Batteries: Insights from Spray Coating Technique. Electrochem. Commun. 2024, 160, 107670. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Bannenberg, L.J.; Liu, M.; Ganapathy, S.; Wagemaker, M. The Lasting Impact of Formation Cycling on the Li-Ion Kinetics between SEI and the Li-Metal Anode and Its Correlation with Efficiency. Sci. Adv. 2024, 10, eadj8889. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Sharova, V.; Carvalho, D.V.; Boulineau, A.; Porcher, W.; de Meatza, I.; Passerini, S. A Comparison of Formation Methods for Graphite//LiFePO4 Cells. Batter. Supercaps 2019, 2, 240–247. [Google Scholar] [CrossRef]
- Li, D.; Zhou, H. Two-Phase Transition of Li-Intercalation Compounds in Li-Ion Batteries. Mater. Today 2014, 17, 451–463. [Google Scholar] [CrossRef]
- Moyer, K.; Carter, R.; Hanken, T.; Douglas, A.; Oakes, L.; Pint, C.L. Electrophoretic Deposition of LiFePO4 onto 3-D Current Collectors for High Areal Loading Battery Cathodes. Mater. Sci. Eng. B 2019, 241, 42–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, T.; DeLatte, L.; Roman-Martinez, G.; Glassey, K.; Ziehl, P.; Sadati, M.; White, R.E.; Coman, P.T. Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries. Electrochem 2025, 6, 13. https://doi.org/10.3390/electrochem6020013
Burns T, DeLatte L, Roman-Martinez G, Glassey K, Ziehl P, Sadati M, White RE, Coman PT. Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries. Electrochem. 2025; 6(2):13. https://doi.org/10.3390/electrochem6020013
Chicago/Turabian StyleBurns, Thomas, Liliana DeLatte, Gabriela Roman-Martinez, Kyra Glassey, Paul Ziehl, Monirosadat Sadati, Ralph E. White, and Paul T. Coman. 2025. "Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries" Electrochem 6, no. 2: 13. https://doi.org/10.3390/electrochem6020013
APA StyleBurns, T., DeLatte, L., Roman-Martinez, G., Glassey, K., Ziehl, P., Sadati, M., White, R. E., & Coman, P. T. (2025). Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries. Electrochem, 6(2), 13. https://doi.org/10.3390/electrochem6020013