Experimental Validation of an Active Fault Tolerant Control Strategy Applied to a Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Design of Active Fault Tolerant Control Strategies for PEMFC Water Management Issues and Metrics for Their Performance Analysis
2.1. Faults Related to PEMFC Water Management
2.1.1. Diagnosis Module
2.1.2. Decision Module
2.1.3. Fault Tree Analysis (FTA)
2.1.4. Decision Protocols
2.2. Control Module
3. Experimental Validation of the AFTC Strategy
3.1. Experimental Setup
3.2. Fault Generation
3.2.1. Flooding Generation at the PEMFC Cathode
3.2.2. Drying out Generation
3.3. Fault Mitigation: Validation of the AFTC
3.4. Flooding Mitigation Strategy
3.5. Flooding AFTC Results
3.5.1. Diagnosis Period of 30 s and for a Low Level of Increment (LoI)
3.5.2. Diagnosis Period of 15 s and for a Low Level of Increment
3.5.3. Diagnosis Period of 60 s and for a Low Level of Increment
3.6. Drying out Mitigation Strategy
3.6.1. Drying out AFTC Results
3.6.2. Diagnosis Period of 30 s and for a Low Level of Increment
4. Discussion
4.1. Flooding Mitigation Analysis
- The major criterion is to minimize the number of transient decisions. In this case, the choice of a low LoI with 30 s of triggering diagnosis period is the most relevant;
- The major criterion is to minimize the triggering time of the deferred decisions. In this case, the choice of a medium LoI with 15 s of triggering diagnosis period is the most relevant;
- The major criterion is the fault mitigation time, the choice of 15 s of triggering diagnosis period is the most relevant choice independently to the LoI.
4.2. Membrane Drying Out Mitigation Analysis
- The major criterion is to minimize the number of transient decisions. In this case, medium LoI or long-lasting decisions for 60 s of diagnosis triggering period are the most relevant actions;
- The major criterion is to minimize the triggering time of the deferred decisions. In this case, the choice of a medium LoI with 60 s of triggering diagnosis period is the most relevant;
- The major criteria are the fault mitigation time, the choices of 15 and 60 s of diagnosis triggering periods for respectively medium and low LoI are the most relevant.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijoux, E.; Steiner, N.Y.; Benne, M.; Péra, M.-C.; Pérez, B.G. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems. J. Power Sources 2017, 359, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145. [Google Scholar] [CrossRef]
- Abbaspour, A.; Yen, K.K.; Forouzannezhad, P.; Sargolzaei, A. Active Adaptive Fault-Tolerant Control Design for PEM Fuel Cells. In 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3616–3622. [Google Scholar]
- Yan, C.; Chen, J.; Liu, H.; Lu, H. Model-Based Fault Tolerant Control for the Thermal Management of PEMFC Systems. IEEE Trans. Ind. Electron. 2020, 67, 2875–2884. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Chen, Z. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer. Int. J. Hydrog. Energy 2020, 45, 13508–13522. [Google Scholar] [CrossRef]
- Luo, L.; Huang, B.; Cheng, Z.; Jian, Q. Improved water management by alternating air flow directions in a proton exchange membrane fuel cell stack. J. Power Sources 2020, 466, 228311. [Google Scholar] [CrossRef]
- Talukdar, K.; Ripan, M.A.; Jahnke, T.; Gazdzicki, P.; Morawietz, T.; Friedrich, K.A. Experimental and numerical study on catalyst layer of polymer electrolyte membrane fuel cell prepared with diverse drying methods. J. Power Sources 2020, 461, 228169. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, X.; Hou, C.; Zhang, Y.; Wang, H.; Liu, X. Enhanced water management via the optimization of cathode microporous layer using 3D graphene frameworks for direct methanol fuel cell. J. Power Sources 2020, 451, 227800. [Google Scholar] [CrossRef]
- Sun, C.Y.; Zhang, H.; Luo, X.D.; Chen, N. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery. Ionics 2019, 25, 4219–4229. [Google Scholar] [CrossRef]
- Choi, S.R.; Kim, D.Y.; An, W.Y.; Choi, S.; Park, K.; Yim, S.D.; Park, J.Y. Assessing the degradation pattern and mechanism of membranes in polymer electrolyte membrane fuel cells using open-circuit voltage hold and humidity cycle test protocols. Mater. Sci. Energy Technol. 2022, 5, 66–73. [Google Scholar] [CrossRef]
- Lebreton, C.; Damour, C.; Benne, M.; Grondin-Perez, B.; Chabriat, J.-P. Passive Fault Tolerant Control of PEMFC air feeding system. Int. J. Hydrogen Energy 2016, 41, 15615–15621. [Google Scholar] [CrossRef]
- Lebreton, C.; Benne, M.; Damour, C.; Yousfi-Steiner, N.; Grondin-Perez, B.; Hissel, D.; Chabriat, J.P. Fault Tolerant Control Strategy applied to PEMFC water management. Int. J. Hydrogen Energy 2015, 40, 10636–10646. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, J. Integrated Design of Reconfigurable Fault-Tolerant Control Systems. J. Guid. Control. Dyn. 2001, 24, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control with Contributions; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wu, X.; Zhou, B. Fault tolerance control for proton exchange membrane fuel cell systems. J. Power Sources 2016, 324, 804–829. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, K.; Zhou, S.; Shan, J.; Bao, D. Features selection and substitution in PEM fuel cell water management failures diagnosis. Fuel Cells 2021, 21, 512–522. [Google Scholar] [CrossRef]
- Lin-Kwong-Chon, C.; Damour, C.; Benne, M.; Kadjo, J.J.A.; Grondin-Pérez, B. Adaptive neural control of PEMFC system based on data-driven and reinforcement learning approaches. Control Eng. Pract. 2022, 120, 105022. [Google Scholar] [CrossRef]
- Ziane, M.A.; Join, C.; Pera, M.C.; Steiner, N.Y.; Benne, M.; Damour, C. A new method for fault detection in a free model context. IFAC-PapersOnLine 2022, 55, 55–60. [Google Scholar] [CrossRef]
- Lee, D.; Bae, J. Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC. Int. J. Hydrogen Energy 2012, 37, 422–435. [Google Scholar] [CrossRef]
- Barbir, F.; Gorgun, H.; Wang, X. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J. Power Sources 2005, 141, 96–101. [Google Scholar] [CrossRef]
- Steiner, N.Y.; Hissel, D.; Moçotéguy, P.; Candusso, D. Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling. Int. J. Hydrogen Energy 2011, 36, 3067–3075. [Google Scholar]
- Yousfi Steiner, N.; Hissel, D.; Mocoteguy, P.; Candusso, D.; Marra, D.; Pianese, C.; Sorrentino, M. Application of Fault Tree Analysis to Fuel Cell diagnosis. Fuel Cells 2012, 12, 302–309. [Google Scholar] [CrossRef]
- Dijoux, E.; Steiner, N.Y.; Benne, M.; Pera, M.; Grondin-Perez, B. Fault Structural Analysis Applied to Proton Exchange Membrane Fuel Cell Water Management Issues. Electrochem 2021, 2, 604–630. [Google Scholar] [CrossRef]
- Single Cell Hardware. Available online: http://fuelcelltechnologies.com/single-cell-hardware (accessed on 1 May 2020).
- MEA for Expandable PEM Research Test Cell—50cm2. Available online: https://www.fuelcellstore.com/fuel-cell-components/membrane-electrode-assembly/mea-expandable-test-cell-50 (accessed on 3 May 2020).
- Siegel, J.B.; McKay, D.A.; Stefanopoulou, A.G.; Hussey, D.S.; Jacobson, D.L. Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode. J. Electrochem. Soc. 2008, 155, B1168. [Google Scholar] [CrossRef]
Normal Operating Conditions | Flooding Operating Conditions | Drying Out Operating Condition | |
---|---|---|---|
Ifc (A) | 20 (0.4 A.cm−2) | 20 (0.4 A.cm−2) | 20 (0.4 A.cm−2) |
λH2 | 2.5 | 2.5 | 2.5 |
λO2 | 3 | 3 | 10 |
Tfc (°C) | 70 | 70 | 70 |
Tcanal (°C) | 70 | 50 | 70 |
Thum (°C) | 62 | 62 | 55 |
RH% | 70 | 100 + condensation | 50 |
Relative Magnitude Increases | Low Level of Increases | Medium Level of Increases |
---|---|---|
Incrementation of the total input gas flow | ∆O2 = ∆O2 + ∆O2. 0.5 | ∆O2 = ∆O2 + ∆O2. 1.35 |
Relative magnitude increments of mitigation variables | Tfc = Tfc + 5 °C | RH% = +10% |
Flooding | T = 15 s and Low LoI | T = 30 s and Low LoI | T = 60 s and Low LoI | T = 15 s and MediumLoI | T = 30 s and MediumLoI | T = 60 s and MediumLoI |
---|---|---|---|---|---|---|
Number of transient decisions | 6 | 3 | 7 | 11 | 10 | 7 |
Number of deferred decisions | 1 | 1 | 2 | 1 | 1 | 1 |
Deferred decision triggering time | 11 mn | 23 mn | 45 mn and 65 mn | 5 mn | 10 mn | 20 mn |
Mitigation time | 15 mn | 25 mn | 70 mn | 15 mn | 20 mn | 25 mn |
Relative Magnitude Increases | Low level of Increases | Medium Level of Increases |
---|---|---|
Incrementation of the total input gas flow | ∆O2 = ∆O2 − ∆O2. 0.5 | ∆O2 = ∆O2 − ∆O2. 1.35 |
Relative magnitude increments of mitigation variables | Tfc = Tfc − 5 °C | RH% = −10% |
Drying out | T = 15 s and Low LoI | T = 30 s and Low LoI | T = 60 s and Low LoI | T = 15 s and Medium LoI | T = 30 s and Medium LoI | T = 60 s and Medium LoI |
---|---|---|---|---|---|---|
Number of transient decisions | 13 | 7 | 4 | 6 | 4 | 4 |
Number of deferred decisions | 1 | 1 | 1 | 1 | 1 | 1 |
Deferred decision triggering time | 20 mn | 8 mn | 6 mn | 9 mn | 7 mn | 14 mn |
Mitigation time | 25 mn | 16 mn | 10 mn | 20 mn | 17 mn | 24 mn |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dijoux, E.; Steiner, N.Y.; Benne, M.; Péra, M.-C.; Grondin-Perez, B. Experimental Validation of an Active Fault Tolerant Control Strategy Applied to a Proton Exchange Membrane Fuel Cell. Electrochem 2022, 3, 633-652. https://doi.org/10.3390/electrochem3040042
Dijoux E, Steiner NY, Benne M, Péra M-C, Grondin-Perez B. Experimental Validation of an Active Fault Tolerant Control Strategy Applied to a Proton Exchange Membrane Fuel Cell. Electrochem. 2022; 3(4):633-652. https://doi.org/10.3390/electrochem3040042
Chicago/Turabian StyleDijoux, Etienne, Nadia Yousfi Steiner, Michel Benne, Marie-Cécile Péra, and Brigitte Grondin-Perez. 2022. "Experimental Validation of an Active Fault Tolerant Control Strategy Applied to a Proton Exchange Membrane Fuel Cell" Electrochem 3, no. 4: 633-652. https://doi.org/10.3390/electrochem3040042
APA StyleDijoux, E., Steiner, N. Y., Benne, M., Péra, M. -C., & Grondin-Perez, B. (2022). Experimental Validation of an Active Fault Tolerant Control Strategy Applied to a Proton Exchange Membrane Fuel Cell. Electrochem, 3(4), 633-652. https://doi.org/10.3390/electrochem3040042