Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery with Commercial Mini Channel Cold Plates
Abstract
:1. Introduction and Literature Review
2. Modelling and Simulations
2.1. BTMS—Geometry, Mesh and Experiments
2.2. BTMS—Phenomena and Governing Equations
2.2.1. Li-Ion Battery Model
- Mass conservation of Li+ species in a solid-phase
- Mass conservation of Li+ species in electrolyte-phase
- Electronic charge transport in a solid-phase:
- Electronic charge transport in electrolyte-phase:
- Electrochemical kinetics:
2.2.2. Conjugate Heat Transfer Model
- Conservation of mass:
- Conservation of momentum (laminar flow):
- Conservation of momentum (turbulent flow):
- Conservation of energy:
2.3. Numerical Solvers in COMSOL Software
3. Results and Discussion
4. Summary
- (i)
- The coolant flow rate has profound effect on the battery surface temperature uniformity, while the coolant inlet temperature has significant effect on the peak (maximum) temperature;
- (ii)
- The coolant flow rate has effect on the battery surface peak temperature up to a certain limit, beyond which parasitic power requirements increase without a significant battery cooling;
- (iii)
- A high coolant flow rate of 600 mL/min resulted in a drop in temperature difference across the battery surface by 6–10 °C from 2 C to 4 C discharge rates;
- (iv)
- A low coolant inlet temperature of 25 °C and high coolant flow rate of 600 mL/min showed that the battery surface temperature rise is faster, indicating that the battery heat generation rate is high at a low coolant inlet temperature;
- (v)
- At high coolant flow rates, the battery temperature difference is within the acceptable range (), but the peak temperatures are not.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, G.; Cao, L.; Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 2017, 367, 90–105. [Google Scholar] [CrossRef]
- Shabani, B.; Biju, M. Theoretical modelling methods for thermal management of batteries. Energies 2015, 8, 10153–10177. [Google Scholar] [CrossRef]
- Malik, M.; Dincer, I.; Rosen, M.A.; Mathew, M.; Fowler, M. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Appl. Therm. Eng. 2018, 129, 472–481. [Google Scholar] [CrossRef]
- Chen, K.; Unsworth, G.; Li, X. Measurements of heat generation in prismatic Li-ion batteries. J. Power Sources 2014, 261, 28–37. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, M.; Lu, L.; Li, J.; Han, X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J. Therm. Anal. Calorim. 2014, 116, 1001–1010. [Google Scholar] [CrossRef]
- Jiang, F.; Peng, P.; Sun, Y. Thermal analyses of LiFePO4/graphite battery discharge processes. J. Power Sources 2014, 243, 181–194. [Google Scholar] [CrossRef]
- Drake, S.J.; Martin, M.; Wetz, D.A.; Ostanek, J.K.; Miller, S.P.; Heinzel, J.M.; Jain, A. Heat generation rate measurement in a Li ion cell at large C-rates through temperature and heat flux measurements. J. Power Sources 2015, 285, 266–273. [Google Scholar] [CrossRef]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Samba, A.; Omar, N.; Gualous, H.; Firouz, Y.; Bossche, P.V.; Mierlo, J.V.; Boubekeur, T.I. Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells. Electrochim. Acta 2014, 117, 246–254. [Google Scholar] [CrossRef]
- Bahiraei, F.; Ghalkhani, M.; Fartaj, A.; Nazri, G. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications. Appl. Therm. Eng. 2017, 125, 904–918. [Google Scholar] [CrossRef]
- Neupane, S.; Alipanah, M.; Barnes, D.; Li, X. Heat generation characteristics of LiFePO4 pouch cells with passive thermal management. Energies 2018, 11, 1243. [Google Scholar] [CrossRef] [Green Version]
- Arora, S. Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies. J. Power Sources 2018, 400, 621–640. [Google Scholar] [CrossRef]
- An, Z.; Jia, L.; Wei, L.; Dang, C.; Peng, Q. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled mode. Appl. Therm. Eng. 2018, 137, 792–807. [Google Scholar] [CrossRef]
- Han, T.; Khalighi, B.; Yen, E.C.; Kaushik, S. Li-ion battery pack thermal management: Liquid vs. air cooling. J. Therm. Sci. Eng. Appl. 2019, 11, 021009. [Google Scholar] [CrossRef]
- Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. Int. J. Therm. Sci. 2016, 99, 204–212. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Numerical modelling and experimental investigation of a prismatic battery subjected to water cooling. Numer. Heat Transf. A 2017, 17, 626–637. [Google Scholar] [CrossRef]
- Chalise, D.; Shah, K.; Prasher, R.; Jain, A. Conjugate heat transfer analysis of thermal management of a li-ion battery pack. Trans. ASME J. Electrochem. Energy Convers. Storage 2018, 15, 011008. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.; Xu, J.; Qiao, Y.; Ma, Y. Thermal management for high power lithium-ion battery by mini channel aluminum tubes. Appl. Therm. Eng. 2016, 101, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Rao, Z.; Liu, X.; Zhao, J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 2015, 89, 387–395. [Google Scholar] [CrossRef]
- Alipour, M.; Esen, E.; Kizilel, R. Investigation of 3-D multilayer approach in predicting the thermal behavior of 20 Ah Li-ion cells. Appl. Therm. Eng. 2019, 153, 620–632. [Google Scholar] [CrossRef]
- Lai, Y.; Du, S.; Ai, L.; Ai, L.; Cheng, Y.; Tang, Y.; Ji, M. Insight into heat generation of lithium-ion batteries based on the electrochemical-thermal model at high discharge rates. Int. J. Hydrogen Energy 2015, 40, 3039–3049. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Meng, L.; Li, X.; Situ, W.; Lv, Y.; Rao, M. Liquid cooling based on thermal silica plate for battery thermal management system. Int. J. Energy Resour. 2017, 41, 2468–2479. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, L.; Wang, L. Battery thermal management system with liquid cooling and heating in electric vehicles. J. Automot. Saf. Energy 2012, 3, 371–380. [Google Scholar] [CrossRef]
- Akkaldevi, C.; Chitta, S.D.; Jaidi, J.; Panchal, S.; Fowler, M.; Fraser, R. Coupled Electrochemical-Thermal Simulations and Validation of Minichannel Cold-Plate Water-Cooled Prismatic 20 Ah LiFePO4 Battery. Electrochem 2021, 2, 643–663. [Google Scholar] [CrossRef]
- Sandeep Dattu, C.; Chaithanya, A.; Jaidi, J.; Panchal, S.; Fowler, M.; Fraser, R. Comparison of lumped and 1D electrochemical models for prismatic 20 Ah LiFePO4 battery sandwiched between minichannel cold-plates. Appl. Therm. Eng. 2021, 199, 117586. [Google Scholar] [CrossRef]
- Battery Design Module User’s Guide; COMSOL Multiphysics® v.5.6; COMSOL AB: Stockholm, Sweden, 2020; pp. 231–371. Available online: https://doc.comsol.com/5.6/doc/com.comsol.help.battery/BatteryDesignModuleUsersGuide.pdf (accessed on 15 November 2021).
- Cai, L.; White, R.E. Mathematical Modeling of a Lithium Ion Battery. In Proceedings of the COMSOL Conference 2009 Boston, USA. Available online: https://www.comsol.com/paper/download/45063/Cai.pdf (accessed on 15 November 2021).
- Hosseinzadeh, E.; Genieser, R.; Worwood, D.; Barai, A.; Marco, J.; Jennings, P. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application. J. Power Source 2018, 382, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.B.; Wang, C.Y. Thermal Electrochemical Modeling of Battery System. J. Electrochem. Soc. 2000, 147, 2910–2922. Available online: http://ecec.me.psu.edu/Pubs/2000-Gu-JES-1.pdf (accessed on 15 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaidi, J.; Chitta, S.D.; Akkaldevi, C.; Panchal, S.; Fowler, M.; Fraser, R. Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery with Commercial Mini Channel Cold Plates. Electrochem 2022, 3, 259-275. https://doi.org/10.3390/electrochem3020018
Jaidi J, Chitta SD, Akkaldevi C, Panchal S, Fowler M, Fraser R. Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery with Commercial Mini Channel Cold Plates. Electrochem. 2022; 3(2):259-275. https://doi.org/10.3390/electrochem3020018
Chicago/Turabian StyleJaidi, Jeevan, Sandeep Dattu Chitta, Chaithanya Akkaldevi, Satyam Panchal, Michael Fowler, and Roydon Fraser. 2022. "Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery with Commercial Mini Channel Cold Plates" Electrochem 3, no. 2: 259-275. https://doi.org/10.3390/electrochem3020018
APA StyleJaidi, J., Chitta, S. D., Akkaldevi, C., Panchal, S., Fowler, M., & Fraser, R. (2022). Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery with Commercial Mini Channel Cold Plates. Electrochem, 3(2), 259-275. https://doi.org/10.3390/electrochem3020018