Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes
Abstract
:1. Introduction
1.1. Environment Effect of Lindane
1.2. Human Health Effect
1.3. Methods of Detection
2. Classification of Lindane Based on the Isomeric Form
2.1. Voltammetric Detection of Lindane Using Glassy Carbon Electrode
2.2. Voltammetric Detection of Lindane Using Modified Pencil Carbon Electrode
2.3. Electrochemical Reduction of Lindane
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Alpha-, Beta-, Gamma-, and Delta-hexachlorocyclohexane. U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2002. [Google Scholar] [CrossRef]
- Prathap, M.U.A.; Sun, S.; Xu, Z.J. An electrochemical sensor highly selective for lindane determination: A comparative study using three different α-MnO2 nanostructures. RSC Adv. 2016, 6, 22973–22979. [Google Scholar] [CrossRef]
- Commission for Environmental Cooperation. The North American Regional Action Plan (NARAP) on Lindane and Other Hexachlorocyclohexane (HCH) Isomers; Commission for Environmental Cooperation: Montreal, QC, Canada, 2006; p. 16. [Google Scholar]
- Ordish, G. The Constant Pest: A Short History of Pests and Their Control; Peter Davies: London, UK, 1976; ISBN 9780432113004. [Google Scholar]
- Courtney, K.D. Hexachlorobenzene (HCB): A Review A. PCT Epidemic in Turkey. I. Human Toxic Exposure. 2. Clinical Symptoms of PCT in Turkey. Environ. Res. 1979, 20, 225–266. [Google Scholar] [CrossRef]
- Jennings, A.A.; Li, Z. Residential surface soil guidance applied worldwide to the pesticides added to the Stockholm Convention in 2009 and 2011. J. Environ. Manage. 2015, 160, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.; Gavilán, A.; Romero, T.; Ize, I. Mexican experience in local, regional and global actions for lindane elimination. Environ. Sci. Policy 2011, 14, 503–509. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Srivastava, S.; Singh, N. Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 2011, 82, 56–63. [Google Scholar] [CrossRef]
- Xu, T.; Miao, J.; Chen, Y.; Yin, D.; Hu, S.; Sheng, G.D. The long-term environmental risks from the aging of organochlorine pesticide lindane. Environ. Int. 2020, 141, 105778. [Google Scholar] [CrossRef]
- Antunes, S.C.; Castro, B.B.; Gonçalves, F. Effect of food level on the acute and chronic responses of daphnids to lindane. Environ. Pollut. 2004, 127, 367–375. [Google Scholar] [CrossRef]
- Lindane—A Review of Toxicity and Environmental Fate. Available online: https://www.researchgate.net/profile/Vijay-Cuddeford/publication/242513937_LINDANE_-_A_REVIEW_OF_TOXICITY/links/568d40f808aef987e565e348/LINDANE-A-REVIEW-OF-TOXICITY.pdf (accessed on 6 April 2022).
- Lefebvre, T.; Fréour, T.; Ploteau, S.; Le Bizec, B.; Antignac, J.-P.; Cano-Sancho, G. Associations between human internal chemical exposure to Persistent Organic Pollutants (POPs) and In Vitro Fertilization (IVF) outcomes: Systematic review and evidence map of human epidemiological evidence. Reprod. Toxicol. 2021, 105, 184–197. [Google Scholar] [CrossRef]
- Lock, K.; De Schamphelaere, K.A.C.; Janssen, C.R. The effect of lindane on terrestrial invertebrates. Arch. Environ. Contam. Toxicol. 2002, 42, 217–221. [Google Scholar] [CrossRef]
- Benimeli, C.S.; Chaile, A.P.; Amoroso, M.J. Method for Determining Lindane Concentration in Water and Solid Samples. Environ. Microbiol. 2019, 16, 279–282. [Google Scholar] [CrossRef]
- Noori, J.S.; Mortensen, J.; Geto, A. Recent development on the electrochemical detection of selected pesticides: A focused review. Sensors 2020, 20, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisharody, L.; Gopinath, A.; Malhotra, M.; Nidheesh, P.V.; Kumar, M.S. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere 2022, 287, 132216. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, G.K.; Swamy, B.E.K.; Casillas, N.; Flores-Moreno, R. Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method. Electrochim. Acta 2017, 258, 1025–1034. [Google Scholar] [CrossRef]
- Shankar, S.S.; Swamy, B.E.K.; Chandrashekar, B.N.; Gururaj, K.J. Sodium do-decyl benzene sulfate modified carbon paste electrode as an electrochemical sensor for the simultaneous analysis of dopamine, ascorbic acid, and uric acid: A voltammetric study. J. Mol. Liq. 2013, 177, 32–39. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Hassan, H.M.; Khan, R.; Andreescu, S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochem. Sci. Adv. 2021. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.; Patel, A.; Datta, B.; DeLong, R.K. Nanomaterials for Agricultural and Ecological Defense Applications: Active Agents and Sensors. Wiley Interdiscip. Rev. 2021, 13, e1713. [Google Scholar] [CrossRef]
- Walker, K.; Vallero, D.A.; Lewis, R.G. Factors influencing the distribution of lindane and others. Environ. Sci. Technol. 1999, 33, 4373–4378. [Google Scholar] [CrossRef]
- Vijgen, J. The Legacy of Lindane HCH Isomer Production Annexes a Global Overview of Residue Management, Formulation and Disposal; International HCH & Pesticides Association: Borculo, The Netherlands, 2006. [Google Scholar]
- Vijgen, J.; Abhilash, P.C.; Li, Y.F.; Lal, R.; Forter, M.; Torres, J.; Singh, N.; Yunus, M.; Tian, C.; Schäffer, A.; et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ. Sci. Pollut. Res. 2011, 18, 152–162. [Google Scholar] [CrossRef]
- Vijgen, J.; de Borst, B.; Weber, R.; Stobiecki, T.; Forter, M. HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Environ. Pollut. 2019, 248, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Masabi, K.K.; Fayemi, O.E.; Adekunle, A.S.; Sherif, E.S.M.; Ebenso, E.E. Electrocatalysis of Lindane Using Antimony Oxide Nanoparticles Based-SWCNT/PANI Nanocomposites. Front. Chem. 2018, 6, 423. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, A.; Vincenta, S.; Chandrasekaran, M. Development of an electroanalytical sensor for γ-hexachlorocyclohexane based on a cellulose acetate modified glassy carbon electrode. Anal. Methods 2013, 5, 931–938. [Google Scholar] [CrossRef]
- Thanalechumi, P.; Yusoff, A.R.M.; Yusop, Z. Green sensors for voltammetric determination of lindane in water samples using bare and nylon 6,6 modified pencil electrodes. Anal. Methods 2019, 11, 4899–4909. [Google Scholar] [CrossRef]
- Thanalechumi, P.; Yusoff, A.R.M.; Yusop, Z. Novel Electrochemical Sensor Based on Nylon 6,6-Modified Graphite HB Pencil Electrode for Chlorothalonil Determination by Differential Pulse Cathodic Stripping Voltammetry. Water Air Soil Pollut. 2020, 231, 189. [Google Scholar] [CrossRef]
- Merz, J.P.; Gamoke, B.C.; Foley, M.P.; Raghavachari, K.; Peters, D.G. Electrochemical reduction of (1R,2r,3S,4R,5r,6S)-hexachlorocyclohexane (Lindane) at carbon cathodes in dimethylformamide. J. Electroanal. Chem. 2011, 660, 121–126. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swain, N.; Soni, I.; Kumar, P.; Kudur Jayaprakash, G. Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes. Electrochem 2022, 3, 248-258. https://doi.org/10.3390/electrochem3020017
Swain N, Soni I, Kumar P, Kudur Jayaprakash G. Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes. Electrochem. 2022; 3(2):248-258. https://doi.org/10.3390/electrochem3020017
Chicago/Turabian StyleSwain, Nibedita, Isha Soni, Pankaj Kumar, and Gururaj Kudur Jayaprakash. 2022. "Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes" Electrochem 3, no. 2: 248-258. https://doi.org/10.3390/electrochem3020017
APA StyleSwain, N., Soni, I., Kumar, P., & Kudur Jayaprakash, G. (2022). Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes. Electrochem, 3(2), 248-258. https://doi.org/10.3390/electrochem3020017