The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Anhydrous CH3OH-LiClO4 Solutions
3.1.1. Polarisation Measurements
3.1.2. Impedance Measurements
3.1.3. SEM Measurements
3.1.4. XPS Analysis
3.1.5. FTIR-ATR Measurements
3.2. The Effect of the Methanol–Water Interaction on the Passivation Process of Titanium
3.2.1. The Structure of the CH3OH–H2O–0.1 M LiClO4 Solutions
3.2.2. Polarisation Measurements
3.2.3. EIS Investigations
3.2.4. FTIR-ATR Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nishimura, R.; Kudo, K. Anodic oxidation and kinetics of titanium in 1 M chloride solutions. Corros. Sci. 1982, 22, 637–645. [Google Scholar] [CrossRef]
- Basame, S.B.; White, H.S. Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface. J. Electrochem. Soc. 2000, 147, 1376–1381. [Google Scholar] [CrossRef]
- Burstein, G.T.; Souto, R.M. Observations of localised instability of passive titanium in chloride solution. Electrochim. Acta 1995, 40, 1881–1888. [Google Scholar] [CrossRef]
- Liuz, J.; Alfantazi, A.; Asselin, E. The anodic passivity of titanium in mixed sulfate-chloride solutions. J. Electrochem. Soc. 2015, 162, E289–E295. [Google Scholar]
- Trompette, J.L.; Massot, L.; Arurault, L.; Fontorbes, S. Influence of the anion specificity on the anodic polarization of titanium. Corros. Sci. 2011, 53, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Welsch, G.; Boyer, R.; Collings, E. Materials Properties Handbook: Titanium Alloys; ASM International: Metals Park, OH, USA, 1993. [Google Scholar]
- Schenk, R. The corrosion properties of titanium and titanium alloys. In Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 145–170. [Google Scholar]
- Cerquetti, A.; Mazza, F. Electrochemical behaviour and stress-corrosion cracking of titanium in alcoholic solutions. Corros. Sci. 1973, 13, 337–349. [Google Scholar] [CrossRef]
- Fushimi, K.; Habazaki, H. Anodic dissolution of titanium in NaCl-containing ethylene glycol. Electrochim. Acta 2008, 53, 3371–3376. [Google Scholar] [CrossRef]
- Fushimi, K.; Kondo, H.; Konno, H. Anodic dissolution of titanium in chloride-containing ethylene glycol solution. Electrochim. Acta 2009, 55, 258–264. [Google Scholar] [CrossRef]
- Trasatti, S.P.; Sivieri, E. Electrochemical and stress corrosion cracking behaviour of titanium in n-propanol and iso-propanol solutions. Mater. Chem. Phys. 2004, 83, 367–372. [Google Scholar] [CrossRef]
- Trasatti, S.P.; Sivieri, E. Corrosion behaviour of titanium in non-aqueous solvents. Mater. Chem. Phys. 2005, 92, 475–479. [Google Scholar] [CrossRef]
- Sanderson, G.; Scully, J.C. The stress corrosion of ti alloys in methanolic solutions. Corros. Sci. 1968, 8, 541–548. [Google Scholar] [CrossRef]
- Banaś, K.; Banaś, J. Anodic behaviour of titanium in methanol solutions of chlorides. Metall. Foundry Eng. 2003, 29, 123–133. [Google Scholar]
- Burstein, G.T.; Whillock, G.O.H. The dissolution and repassivation of new titanium surfaces in alkaline methanolic solution:The phenomena. J. Electrochem. Soc. 1989, 136, 1313–1319. [Google Scholar] [CrossRef]
- Whillock, G.O.H.; Burstein, G.T. The dissolution and repassivation of new tiitanium surfaces in alkaline methanolic solution: The kinetics. J. Electrochem. Soc. 1989, 136, 1320–1327. [Google Scholar] [CrossRef]
- Mazza, F.; Puschmann, H. Anodisches verhalten und korrosion von titan in methanolischen lösungen. Mater. Corros. 1969, 20, 199–205. [Google Scholar] [CrossRef]
- Menzies, I.A.; Averill, A.F. The anodic behaviour of titanium in HCl-methanol solutions. Electrochim. Acta 1968, 13, 807–824. [Google Scholar] [CrossRef]
- Parry, E.P.; Hern, D.H. Effect of chloride on the anodic dissolution of titanium in methanolic solutions. J. Electrochem. Soc. 1972, 119, 1141–1147. [Google Scholar] [CrossRef]
- Powell, D.T.; Scully, J.C. Fractographic observations of the stress corrosion cracking of titanium alloys in methanolic environments. Corrosion 1969, 25, 483–492. [Google Scholar] [CrossRef]
- Qin, Z.; Pang, X.; Qiao, L.J.; Khodayari, M.; Volinsky, A. Water molecules effect on pure Ti passive film structure in methanol solution. Appl. Surf. Sci. 2014, 303, 282–289. [Google Scholar] [CrossRef]
- Qin, Z.; Pang, X.; Yan, Y.; Qiao, L.; Tran, H.T.; Volinsky, A.A. Passive film-induced stress and mechanical properties of α-Ti in methanol solution. Corros. Sci. 2014, 78, 287–292. [Google Scholar] [CrossRef]
- Ebtehaj, K.; Hardie, D.; Parkins, R.N. The stress corrosion and pre-exposure embrittlement of titanium in methanolic solutions of hydrochloric acid. Corros. Sci. 1985, 25, 415–429. [Google Scholar] [CrossRef]
- Xingfu, Z.; Daobao, C.; Jiashan, G.; Changjian, L.; Huashui, L.; Zhongqun, T. Direct electrochemical preparation of titanium alkoxides. Acta Chim. Sin. 2000, 58, 1327–1331. [Google Scholar]
- Chen, J.; Ollis, D.F.; Rulkens, W.H.; Bruning, H. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions: Photocatalytic activity and pH influence. Water Res. 1999, 33, 661–668. [Google Scholar] [CrossRef]
- Gupta, S.S.; Datta, J. An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs). J. Chem. Sci. 2005, 117, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.F.; Chu, D.B.; Lin, C.J. Anodic dissolution of spongy titanium in ethanol solution for preparation of nano-sized TiO2 powder. Electrochim. Acta 2002, 47, 2769–2773. [Google Scholar] [CrossRef]
- Al-Abdallah, M.M. Chemical and electrochemical behaviour of titanium in methanol-water-HCl mixtures. Br. Corros. J. 1991, 26, 133–134. [Google Scholar] [CrossRef]
- Mansfeld, F. The effect of water on passivity and pitting of titanium in solutions of methanol and hydrogen chloride. J. Electrochem. Soc. 1971, 118, 1412–1415. [Google Scholar] [CrossRef]
- Banaś, J.; Stypuła, B.; Banaś, K.; Światowska-Mrowiecka, J.; Starowicz, M.; Lelek-Borkowska, U. Corrosion and passivity of metals in methanol solutions of electrolytes. J. Solid State Electrochem. 2009, 13, 1669. [Google Scholar] [CrossRef]
- Grigoriew, W.P.; Nieczajewa, O.N.; Popowa, A.A. Formirovanie anodnyh plienok na titanie v vodnyh i organichieskih pierhloratnych sriedah. Russ. J. Electrochem. 1992, 28, 2–4. [Google Scholar]
- Nieczajewa, O.N.; Grigoriew, W.P.; Popowa, A.A. Izuchienie kinietiki formirovania anodnyh plienok na titanie v pierhloratnyh spirtovyh spriedah. Zashchita Met. 1992, 28, 4–6. [Google Scholar]
- Sastry, S. Water structure: Order and oddities. Nature 2001, 409, 300–301. [Google Scholar] [CrossRef]
- Sarkar, S.; Joarder, R.N. Molecular clusters and correlations in liquid methanol at room temperature. J. Chem. Phys. 1993, 99, 2032–2039. [Google Scholar] [CrossRef]
- Guo, J.H.; Luo, Y.; Augustsson, A.; Kashtanov, S.; Rubensson, J.E.; Shuh, D.K.; Ågren, H.; Nordgren, J. Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 2003, 91, 157401. [Google Scholar] [CrossRef]
- Bosch, E.; Bou, P.; Allemann, H.; Rosés, M. Retention of ionizable compounds on HPLC. pH scale in methanol-water and the pK and pH values of buffers. Anal. Chem. 1996, 68, 3651–3657. [Google Scholar] [CrossRef]
- Galicia-Andrés, E.; Dominguez, H.; Pusztai, L.; Pizio, O. Composition dependence of thermodynamic, dynamic and dielectric properties of water–methanol model mixtures. Molecular dynamics simulation results with the OPLS-AA model for methanol. J. Mol. Liq. 2015, 212, 70–78. [Google Scholar]
- Dougan, L.; Bates, S.P.; Hargreaves, R.; Fox, J.P.; Crain, J.; Finney, J.L.; Réat, V.; Soper, A.K. Methanol-water solutions: A bi-percolating liquid mixture. J. Chem. Phys. 2004, 121, 6456–6462. [Google Scholar] [CrossRef] [Green Version]
- Noskov, S.Y.; Kiselev, M.G.; Kolker, A.M.; Rode, B.M. Structure of methanol-methanol associates in dilute methanol-water mixtures from molecular dynamics simulation. J. Mol. Liq. 2001, 91, 157–165. [Google Scholar] [CrossRef]
- Tanaka, H.; Gubbins, K.E. Structure and thermodynamic properties of water–methanol mixtures: Role of the water–water interaction. J. Chem. Phys. 1992, 97, 2626–2634. [Google Scholar] [CrossRef]
- Mandal, A.; Prakash, M.; Kumar, M.R.; Parthasarathi, R.; Subramanian, V. Ab initio and DFT studies on methanol-water clusters. J. Phys. Chem. A 2010, 114, 2250–2258. [Google Scholar] [CrossRef]
- Laaksonen, A.; Kusalik, P.G.; Svishchev, I.M. Three-dimensional structure in water-methanol mixtures. J. Phys. Chem. A 1997, 101, 5910–5918. [Google Scholar] [CrossRef]
- Dixit, S.; Crain, J.; Poon, W.C.K.; Finney, J.L.; Soper, A.K. Molecular segregation observed in a concentrated alcohol-water solution. Nature 2002, 416, 829–832. [Google Scholar] [CrossRef]
- Dixit, S.; Soper, A.K.; Finney, J.L.; Crain, J. Water structure and solute association in dilute aqueous methanol. Europhys. Lett. 2002, 59, 377–383. [Google Scholar] [CrossRef]
- Neidig, H.A.; Yingling, R.T.; Lockwood, K.L.; Teates, T.G. Interaction in chemical systems. The methanol-water system. J. Chem. Educ. 1965, 42, 309. [Google Scholar] [CrossRef]
- Neidig, H.A.; Yingling, R.T.; Lockwood, K.L.; Teates, T.G. Interaction in chemical systems. The KCl-methanol-water system. J. Chem. Educ. 1965, 42, 368. [Google Scholar] [CrossRef]
- Benson, S.P.; Pleiss, J. Incomplete mixing versus clathrate-like structures: A molecular view on hydrophobicity in methanol–water mixtures. J. Mol. Model. 2013, 19, 3427–3436. [Google Scholar] [CrossRef]
- Hernández-Cobos, J.; Ortega-Blake, I. Hydrophobic hydration in methanol aqueous solutions. J. Chem. Phys. 1995, 103, 9261. [Google Scholar] [CrossRef]
- Masella, M.; Flament, J.P. Relation between cooperative effects in cyclic water, methanol/water, and methanol trimers and hydrogen bonds in methanol/water, ethanol/water, and dimethylether/water heterodimers. J. Chem. Phys. 1998, 108, 7141–7151. [Google Scholar] [CrossRef]
- Bolis, G.; Corongiu, G.; Clementi, E. Methanol in water solution at 300 K. Chem. Phys. Lett. 1982, 86, 299–306. [Google Scholar] [CrossRef]
- Van Erp, T.S.; Meijer, E.J. Hydration of methanol in water. A DFT-based molecular dynamics study. Chem. Phys. Lett. 2001, 333, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Soper, A.K.; Finney, J.L. Hydration of methanol in aqueous solution. Phys. Rev. Lett. 1993, 71, 4346–4349. [Google Scholar] [CrossRef]
- Ebukuro, T.; Takami, A.; Oshima, Y.; Koda, S. Raman spectroscopic studies on hydrogen bonding in methanol and methanol/water mixtures under high temperature and pressure. J. Supercrit. Fluids 1999, 15, 73–78. [Google Scholar] [CrossRef]
- Sameti, M.R.; Bayat, M.; Salehzadeh, S. The DFT study of hydrogen bonding and thermodynamic parameters of (CH3OH)n(H2O)m (n, m = 1–8) clusters at different temperatures. Arab. J. Chem. 2016, 9 (Suppl. 1), S41–S46. [Google Scholar] [CrossRef] [Green Version]
- Moin, S.T.; Hofer, T.S.; Randolf, B.R.; Rode, B.M. Structure and dynamics of methanol in water: A quantum mechanical charge field molecular dynamics study. J. Comput. Chem. 2011, 32, 886–892. [Google Scholar] [CrossRef]
- Batista da Silva, J.A.; Moreira, F.G.B.; Leite dos Santos, V.M.; Longo, R.L. On the hydrogen bond networks in the water-methanol mixtures: Topology, percolation and small-world. Phys. Chem. Chem. Phys. 2011, 13, 6452–6461. [Google Scholar] [CrossRef]
- Dixit, S.; Poon, W.C.K.; Crain, J. Hydration of methanol in aqueous solutions: A Raman spectroscopic study. J. Phys. Condens. Matter 2000, 12, L323. [Google Scholar] [CrossRef]
- Lelek-Borkowska, U.; Talar-Westenholtz, I.; Banaś, J. Badanie produktów procesów elektrochemicznych zachodzących na powierzchni tytanu w roztworze CH3OH-LiClO4 metodą spektroskopii FTIR-ATR. Ochr. Przed Korozją 2010, 53, 599–601. [Google Scholar]
- Bisztyga, M.; Lelek-Borkowska, U.; Proniewicz, E.; Banaś, J. Cathodic behaviour of nickel in alcohol solutions of electrolytes. Electrochim. Acta 2016, 207, 1–8. [Google Scholar] [CrossRef]
- Dobos, D. Electrochemical Data; Akadémiai Kiadó, Budapest: Budapest, Hungary, 1976. [Google Scholar]
- Pourbaix, M. Atlas of Eectrochemical Equilibriain Aqueous Solutions; NACE International: Houston, TX, USA, 1974. [Google Scholar]
- Sibrell, P.L. Electrochemical Reduction of Titanium in Nonaqueous Solvents; Bureau of Mines: Pittsburgh, PA, USA, 1995.
- Hartmann, H.; Schläfer, H.L.; Hansen, K.H. Uber lichtabsorption vom dipolkomplexen des III-wertigen titans vom typ [TiA6]3+ mit A = H2O, CH3OH, C2H5OH und (NH2)2CO. Z. Anorg. Allg. Chem. 1957, 289, 40–65. [Google Scholar] [CrossRef]
- Bélanger, G. Anodic oxidation of anhydrous methanol. J. Electrochem. Soc. 1976, 123, 818–823. [Google Scholar] [CrossRef]
- Vassiliev, Y.B.; Lotvin, B.M. Specific features of electrooxidation of alcohols on platinum in absolute alcohol solutions. Role of water in chemisorption and dehydrogenation processes. Electrochim. Acta 1985, 30, 1345–1354. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Sundberg, P.; Larsson, R.; Folkesson, B. On the core electron binding energy of carbon and the effective charge of the carbon atom. J. Electron. Spectrosc. Relat. Phenom. 1988, 46, 19–29. [Google Scholar] [CrossRef]
- Muilenberg, G.E.; Wagner, C.D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1979. [Google Scholar]
- Barr, T.L.; Seal, S. Nature of the use of adventitious carbon as a binding energy standard. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 13, 1239–1246. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Kesler, V.G.; Pervukhina, N.V.; Zhang, Z. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron. Spectrosc. Relat. Phenom. 2006, 152, 18–24. [Google Scholar] [CrossRef]
- Attard, G.A.; Chibane, K.; Ebert, H.D.; Parsons, R. The adsorption and decomposition of methanol on Pt(110). Surf. Sci. 1989, 224, 311–326. [Google Scholar] [CrossRef]
- Beccaria, A.M.; Poggi, G.; Castello, G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water. Br. Corros. J. 1995, 30, 283–287. [Google Scholar] [CrossRef]
- Kakos, G.A.; Winter, G. C-O and Ti-O vibration frequencies in alkyltitanates. Aust. J. Chem. 1968, 21, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A. Thermodynamics of electrolytes in mixed solvents. Application of Pitzer’s thermodynamic equations to activity coefficients of 1:1 electrolytes in methanol-water mixtures. J. Phys. Chem. 1979, 83, 2986–2990. [Google Scholar] [CrossRef]
- Mazzarese, J.; Popovych, O. Standard potentials of Li, Na, and K ellectrodes and transfer free energies of LiCl, NaCl, and KCl in selected ethanol-water and methanol-water solvents. J. Electrochem. Soc. 1983, 130, 2032–2037. [Google Scholar] [CrossRef]
- Loboda, O.; Goncharuk, V. Theoretical study on icosahedral water clusters. Chem. Phys. Lett. 2010, 484, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Buffey, I.P.; brown, W.B.; Gebbie, H.A. Icosahedral water clusters. Chem. Phys. Lett. 1988, 148, 281–284. [Google Scholar] [CrossRef]
- Kabisch, G.; Pollmer, K. Hydrogen bonding in methanol-organic solvent and methanol-water mixtures as studied by the vco and voh. J. Mol. Struct. 1982, 81, 35–50. [Google Scholar]
- Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials. Mater. Sci. Eng. A 2003, 346, 1–7. [Google Scholar] [CrossRef]
- Kelly, E.J. Anodic dissolution of titanium in acidic sulfate solutions: Effects of Ti(III) and Ti(IV) ions. J. Electrochem. Soc. 1976, 123, 162–170. [Google Scholar] [CrossRef]
- Kelly, E.J. Electrochemical behavior of titanium. In Modern Aspects of Electrochemistry; Bockris, J.O., Conway, B.E., White, R.E., Eds.; Plenum Press: New York, NY, USA, 1982. [Google Scholar]
- Huang, Y.Z.; Blackwood, D.J. Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochim. Acta 2005, 51, 1099–1107. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelek-Borkowska, U.; Palumbo, G.; Banaś, J. The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions. Electrochem 2020, 1, 87-103. https://doi.org/10.3390/electrochem1020009
Lelek-Borkowska U, Palumbo G, Banaś J. The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions. Electrochem. 2020; 1(2):87-103. https://doi.org/10.3390/electrochem1020009
Chicago/Turabian StyleLelek-Borkowska, Urszula, Gaetano Palumbo, and Jacek Banaś. 2020. "The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions" Electrochem 1, no. 2: 87-103. https://doi.org/10.3390/electrochem1020009
APA StyleLelek-Borkowska, U., Palumbo, G., & Banaś, J. (2020). The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions. Electrochem, 1(2), 87-103. https://doi.org/10.3390/electrochem1020009