Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Non-Precious Metal Graphene-Based Materials
3. Heteroatom-Doped Metal-Free Graphene Catalysts
4. Non-Precious Transition Metal Graphene Catalysts
5. Non-Precious Metal Graphene Composite Catalysts
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Solomon, S.; Plattner, G.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. PNAS 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; JOHN WILEY & SONS, INC.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Duca, M.; Koper, M.T.M. Fundamental Aspects of Electrocatalysis Surface and Interface Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020; Volume 8, pp. 773–890. [Google Scholar]
- Fletcher, S. Tafel slopes from first principles. J. Solid State Electr. 2009, 13, 537–539. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, Y.C.; Xu, X.; Yu, W.; Yang, X.; Chen, J.G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 2014, 4, 1558–1562. [Google Scholar] [CrossRef]
- Schalenbach, M.; Speck, F.D.; Ledendecker, M.; Kasian, O.; Goehl, D.; Mingers, A.M.; Breitbach, B.; Springer, H.; Cherevko, S.; Mayrhofer, K.J.J. Nickel- molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochim. Acta 2018, 259, 1154–1161. [Google Scholar] [CrossRef]
- Diaz-Coello, S.; García, G.; Arévalo, M.C.; Pastor, E. Precise determination of Tafel slopes by DEMS. Hydrogen evolution on tungsten-based catalysts in alkaline solution. Int. J. Hydrogen Energ. 2019, 44, 12576–12582. [Google Scholar] [CrossRef]
- Rashid, M.; Al Mesfer, M.K.; Naseem, H.; Danish, M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Adv. 2015, 4, 80–93. [Google Scholar]
- Sammes, N. Fuel Cell Technology: Reaching Towards Commercialization in Engineering Materials and Processes Series; Springer: London, UK, 2006. [Google Scholar]
- Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energ. 2017, 42, 11053–11077. [Google Scholar] [CrossRef]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew 2014, 127, 2159–2164. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- He, H.Y.; He, Z.; Shen, Q. Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. Int. J. Hydrog. Energ. 2018, 43, 21835–21843. [Google Scholar] [CrossRef]
- Rivera, L.M.; Fajardo, S.; Arévalo, M.C.; García, G.; Pastor, E. S- and N-doped graphene nanomaterials for the oxygen reduction reaction. Catalysts 2017, 7, 278. [Google Scholar] [CrossRef] [Green Version]
- Sathe, B.R.; Zou, X.; Asefa, T. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catal. Sci. Technol. 2014, 4, 2023–2030. [Google Scholar] [CrossRef]
- Carr, L.D.; Lusk, M.T. Graphene gets designer defects. Nat. Publ. Gr. 2010, 5, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Denis, P.A.; Faccio, R.; Mombru, A.W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur? ChemPhysChem 2009, 10, 715–722. [Google Scholar] [CrossRef]
- Tian, Y.; Wei, Z.; Wang, X.; Peng, S.; Zhang, X. Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. Int. J. Hydrog. Energ. 2016, 42, 4184–4192. [Google Scholar] [CrossRef]
- Cruz-Silva, E.; López-Urías, F.; Muñoz-Sandoval, E.; Sumpter, B.G.; Terrones, H.; Charlier, J.-C.; Terrones, M. Electronic transport and mechanical properties of phosphorus- and phosphorus−nitrogen-doped carbon nanotubes. ACS Nano 2009, 3, 1913–1921. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, Y.; Su, Y.; Yao, Y.; Liu, Y.; Yang, X.; Li, C. Highly dual-doped multilayer nanoporous graphene: Efficient metal-free electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A. 2015, 3, 12642–12645. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Xue, Y.; Xu, Z.; Pei, J.; Zhuang, Z. Self-assembly precursor-derived MoP supported on N, P-Codoped reduced graphene oxides as efficient catalysts for hydrogen evolution reaction. Inorg. Chem. 2018, 57, 13859–13865. [Google Scholar] [CrossRef]
- Agnoli, S.; Favaro, M. Doping graphene with boron: A review of synthesis. J. Mater. Chem. A 2016, 4, 5002–5025. [Google Scholar] [CrossRef]
- Li, X.; Fan, L.; Li, Z.; Wang, K.; Zhong, M.; Wei, J.; Zhu, H. Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv. Energy Mater. 2012, 2, 425–429. [Google Scholar] [CrossRef]
- Qiu, H.; Ito, Y.; Cong, W.; Tan, Y.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew 2015, 54, 14031–14035. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ren, P.; Deng, D.; Bao, X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew 2015, 54, 2100–2104. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lv, Y.; Cao, D. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932. [Google Scholar] [CrossRef]
- Kuang, M.; Wang, Q.; Han, P.; Zheng, G. Cu, Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Adv. Energy. Mater. 2017, 7, 1700193. [Google Scholar] [CrossRef]
- Yan, H.; Xie, Y.; Jiao, Y.; Wu, A.; Tian, C.; Zhang, X.; Wang, L.; Fu, H. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater. 2018, 30, 1704156. [Google Scholar] [CrossRef]
- Qu, Y.; Ke, Y.; Shao, Y.; Chen, W.; Kwok, C.T.; Shi, X.; Pan, H. Effect of curvature on the hydrogen evolution reaction of grapheme. K. Phys. Chem. C 2018, 122, 25331–25338. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakrabarty, S.; Su, W.-N.; Basu, S. Nanostructured nickel ferrite embedded in reduced graphene oxide for electrocatalytic hydrogen evolution reaction. Mater. Today Energy 2018, 8, 118–124. [Google Scholar] [CrossRef]
- Yan, H.; Tian, C.; Wang, L.; Wu, A.; Meng, M.; Zhao, L.; Fu, H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew 2015, 54, 6325–6329. [Google Scholar] [CrossRef]
- Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, G.; Miao, S.; Li, J.; Bao, X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discuss 2014, 176, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Bagher, M.; Salarizadeh, P.; Mohammad, S. MoCoFeS hybridized with reduced graphene oxide as a new electrocatalyst for hydrogen evolution reaction. Chem. Phys. Lett. 2018, 711, 32–36. [Google Scholar] [CrossRef]
- Wondimu, T.H.; Chen, G.; Kabtamu, D.M.; Chen, H.; Bayeh, A.W.; Huang, H.; Wang, H.C. Highly efficient and durable phosphine reduced iron-doped tungsten oxide / reduced graphene oxide nanocomposites for the hydrogen evolution reaction. Int. J. Hydrog. Energ. 2018, 43, 6481–6490. [Google Scholar] [CrossRef]
- Pham, C.V.; Zana, A.; Arenz, M.; Thiele, S. [Mo3S13]2− Cluster decorated sulfur-doped reduced graphene oxide as noble metal-free catalyst for hydrogen evolution reaction in polymer electrolyte membrane electrolyzers. ChemElectroChem 2018, 5, 2672–2680. [Google Scholar] [CrossRef]
- He, H.-Y.; He, Z.; Shen, Q. Reduced graphene oxide/metallic MoSe2: Cu nanosheet nanostructures grown by a chemical process for highly efficient water splitting. Mater. Res. Bull. 2019, 111, 183–190. [Google Scholar] [CrossRef]
Catalyst | Non-Metal Doping Elements | Metal Doping Elements | Onset Overpotential (mV vs RHE) | Tafel Slope (mV·dec−1) | Ref. |
---|---|---|---|---|---|
Acidic Media | |||||
Ultrathin graphene shells encapsulated in a uniform CoNi nanoalloy | - | Co, Ni | 142 | 107 | [27] |
Plasma-etching on S-graphene | S | - | 178 | 86 | [20] |
NS-doped nanoporous graphene (NS-500) | N, S | - | 130 | 80.5 | [12] |
Nitrogen and phosphorus dual-doped multilayer graphene | N, P | - | 120 | 79 | [22] |
MoP nanoparticle supported on N, P- codoped reduced graphene oxides | N, P | Mo | 115 | 54 | [23] |
B-substituted graphene | B | - | ~200 | ~99 | [17] |
Ni-doped graphene | - | Ni | 50 | 45 | [26] |
Co, N-codoped carbon nanotube (CNT) /graphene heterostructure bifunctional catalyst | N | Co | 123 | 67 | [28] |
MoCoFeS/reduced graphene oxide | S | Mo, Co, Fe | 110 | 50 | [36] |
Phosphine reduced an iron-doped tungsten oxide nanoplate/reduced graphene oxide nanocomposite | P | Fe, W | 55 | 42 | [37] |
[Mo3S13]2 clusters decorated sulfur doped reduced graphene oxide | S | Mo | 100 | 41 | [38] |
Phosphorus-modified tungsten nitride /reduced graphene oxide | P | W | 46 | 54 | [33] |
Nickel ferrite embedded in reduced graphene oxide | Ni, Fe | 5 | 58 | [32] | |
Alkaline media | |||||
Cu, Co-embedded nitrogen-enriched mesoporous carbon framework | N | Cu, Co | 145 | 80 | [29] |
Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction | N | Mo | 18 | 68 | [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luis-Sunga, M.; Regent, L.; Pastor, E.; García, G. Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction. Electrochem 2020, 1, 75-86. https://doi.org/10.3390/electrochem1020008
Luis-Sunga M, Regent L, Pastor E, García G. Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction. Electrochem. 2020; 1(2):75-86. https://doi.org/10.3390/electrochem1020008
Chicago/Turabian StyleLuis-Sunga, Maximina, Lana Regent, Elena Pastor, and Gonzalo García. 2020. "Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction" Electrochem 1, no. 2: 75-86. https://doi.org/10.3390/electrochem1020008
APA StyleLuis-Sunga, M., Regent, L., Pastor, E., & García, G. (2020). Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction. Electrochem, 1(2), 75-86. https://doi.org/10.3390/electrochem1020008