Analytical Solution of Oscillatory Stokes Flow in a Porous Pipe with Spatiotemporally Periodic Suction/Injection
Abstract
:1. Introduction
2. Methods
2.1. Mathematical Formulation
2.2. Problem Solution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.; Finkelstein, A. Laminar pipe flow with injection and suction through a porous wall. Trans. Am. Soc. Mech. Eng. 1956, 78, 719–724. [Google Scholar] [CrossRef]
- Terrill, R. Laminar flow in a porous tube. J. Fluids Eng. 1983, 105, 303–307. [Google Scholar] [CrossRef]
- Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection. Commun. Nonlinear Sci. Numer. Simul. 2007, 12, 1181–1189. [Google Scholar] [CrossRef]
- Chang, H.N.; Ha, J.S.; Park, J.K.; Kim, I.H.; Shin, H.D. Velocity field of pulsatile flow in a porous tube. J. Biomech. 1989, 22, 1257–1262. [Google Scholar] [CrossRef]
- Sidnawi, B.; Santhanam, S.; Wu, Q. Analytical and numerical study of a pulsatile flow in a porous tube. J. Fluids Eng. 2019, 141, 121205. [Google Scholar] [CrossRef]
- Macey, R.I. Pressure flow patterns in a cylinder with reabsorbing walls. Bull. Math. Biophys. 1963, 25, 1–9. [Google Scholar] [CrossRef]
- Macey, R.I. Hydrodynamics in the renal tubule. Bull. Math. Biophys. 1965, 27, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Kelman, R. A theoretical note on exponential flow in the proximal part of the mammalian nephron. Bull. Math. Biophys. 1962, 24, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Kozinski, A.; Schmidt, F.; Lightfoot, E. Velocity profiles in porous-walled ducts. Ind. Eng. Chem. 1970, 9, 502–505. [Google Scholar] [CrossRef]
- Bhatti, K.; Siddiqui, A.M.; Bano, Z. Unsteady incompressible Stokes flow through porous pipe of uniform circular cross section with periodic suction and injection. Sukkur IBA J. Comput. Math. Sci. 2017, 1, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.; Sohail, A.; Naqvi, S.; Haroon, T. Analysis of Stokes flow through periodic permeable tubules. Alex. Eng. J. 2017, 56, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Romanò, F.; Suresh, V.; Galie, P.A.; Grotberg, J.B. Peristaltic flow in the glymphatic system. Sci. Rep. 2020, 10, 21065. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 2022, 102, 1025–1151. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.H. Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J. R. Soc. Interface 2019, 16, 20190572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 2018, 9, 4878. [Google Scholar] [CrossRef] [PubMed]
- Raptis, A.; Manopoulos, C.; Xenos, M.; Tsangaris, S. Oscillating magnetohydrodynamic Stokes flow between porous plates with spatiotemporally periodic reabsorption. Fluids 2021, 6, 156. [Google Scholar] [CrossRef]
- Panton, R.L. Incompressible Flow; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Langlois, W.E.; Deville, M.O. Slow Viscous Flow, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Korenev, B.G. Bessel Functions and Their Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Womersley, J.R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 1955, 127, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.; Tyler, E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established. Proc. Phys. Soc. 1929, 42, 1. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manopoulos, C.; Raptis, A.; Tsangaris, S. Analytical Solution of Oscillatory Stokes Flow in a Porous Pipe with Spatiotemporally Periodic Suction/Injection. Appl. Mech. 2022, 3, 683-691. https://doi.org/10.3390/applmech3020040
Manopoulos C, Raptis A, Tsangaris S. Analytical Solution of Oscillatory Stokes Flow in a Porous Pipe with Spatiotemporally Periodic Suction/Injection. Applied Mechanics. 2022; 3(2):683-691. https://doi.org/10.3390/applmech3020040
Chicago/Turabian StyleManopoulos, Christos, Anastasios Raptis, and Sokrates Tsangaris. 2022. "Analytical Solution of Oscillatory Stokes Flow in a Porous Pipe with Spatiotemporally Periodic Suction/Injection" Applied Mechanics 3, no. 2: 683-691. https://doi.org/10.3390/applmech3020040
APA StyleManopoulos, C., Raptis, A., & Tsangaris, S. (2022). Analytical Solution of Oscillatory Stokes Flow in a Porous Pipe with Spatiotemporally Periodic Suction/Injection. Applied Mechanics, 3(2), 683-691. https://doi.org/10.3390/applmech3020040