Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Data Acquisition
2.4. Particle-Image Velocimetry
3. Experimental Results
4. Theoretical Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977. [Google Scholar] [CrossRef] [Green Version]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef]
- Javadi, A.; Habibi, M.; Taheri, F.S.; Moulinet, S.; Bonn, D. Effect of wetting on capillary pumping in microchannels. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Habibi, M.; Hosseini, S.; Khatami, M.; Ribe, N. Liquid supercoiling. Phys. Fluids 2014, 26, 024101. [Google Scholar] [CrossRef]
- Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H.; Tatoulian, M.; Bonn, D. Silver nanocluster catalytic microreactors for water purification. Eur. Phys. J. Spec. Top. 2016, 225, 707–714. [Google Scholar] [CrossRef]
- Atten, P. Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 1–17. [Google Scholar] [CrossRef]
- Saville, D. Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 1997, 29, 27–64. [Google Scholar] [CrossRef]
- Lee, S.; Kang, I. Three-dimensional analysis of the steady-state shape and small-amplitude oscillation of a bubble in uniform and non-uniform electric fields. J. Fluid Mech. 1999, 384, 59–91. [Google Scholar] [CrossRef]
- Shirsavar, R.; Nasiri, M.; Amjadi, A.; Nejati, A.; Sobhani, S.; Habibi, M. Rotation induced by uniform and non-uniform magnetic fields in a conducting fluid carrying an electric current. RSC Adv. 2016, 6, 112641–112645. [Google Scholar] [CrossRef] [Green Version]
- Saghaei, T.; Moradi, A.R.; Shirsavar, R.; Habibi, M. Liquid bulk rotation induced by electric field at free surface. Appl. Phys. Lett. 2015, 106, 053506. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Hajizadeh, F.; Habibi, M.; Milani Moghaddam, H.; Reihani, S.S.N. Optimized rotation of an optically trapped particle for micro mixing. Appl. Phys. Lett. 2018, 113, 223701. [Google Scholar] [CrossRef]
- Taylor, G.I. Electrically driven jets. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1969, 313, 453–475. [Google Scholar]
- Frs, L. On the equilibrium of liquid conducting masses charged with electricity, Lond. Edinb. Dublin Philos. Mag. J. Sci. 1882, 14, 87. [Google Scholar]
- Melcher, J.R. Electrohydrodynamic and magnetohydrodynamic surface waves and instabilities. Phys. Fluids 1961, 4, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Melcher, J.R.; Smith, C.V. Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys. Fluids 1969, 12, 778–790. [Google Scholar] [CrossRef]
- Taylor, G.I. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 291, 159–166. [Google Scholar]
- Schoch, R.B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839. [Google Scholar] [CrossRef] [Green Version]
- Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem. 2004, 76, 3373–3386. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. Ac electrokinetics: A review of forces in microelectrode structures. J. Phys. D Appl. Phys. 1998, 31, 2338. [Google Scholar] [CrossRef] [Green Version]
- Shirsavar, R.; Ramos, A.; Amjadi, A.; Taherinia, J.; Mashhadi, M.; Nejati, A. Induced soap-film flow by non-uniform alternating electric field. J. Electrost. 2015, 73, 112–116. [Google Scholar] [CrossRef]
- Faetti, S.; Fronzoni, L.; Rolla, P. Static and dynamic behavior of the vortex–electrohydrodynamic instability in freely suspended layers of nematic liquid crystals. J. Chem. Phys. 1983, 79, 5054–5062. [Google Scholar] [CrossRef]
- Faetti, S.; Fronzoni, L.; Rolla, P. Electrohydrodynamic domain patterns in freely suspended layers of nematic liquid crystals with negative dielectric anisotropy. J. Chem. Phys. 1983, 79, 1427–1433. [Google Scholar] [CrossRef]
- Faetti, S.; Fronzoni, L.; Rolla, P. Electrohydrodynamic flow in nematic thin films with two free surfaces. J. Phys. Colloq. 1979, 40, C3-497. [Google Scholar] [CrossRef]
- Morris, S.W.; de Bruyn, J.R.; May, A. Electroconvection and pattern formation in a suspended smectic film. Phys. Rev. Lett. 1990, 65, 2378. [Google Scholar] [CrossRef]
- Daya, Z.A.; Morris, S.W.; De Bruyn, J.R. Electroconvection in a suspended fluid film: A linear stability analysis. Phys. Rev. E 1997, 55, 2682. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, A.; Shirsavar, R.; Radja, N.H.; Ejtehadi, M. A liquid film motor. Microfluid. Nanofluidics 2009, 6, 711–715. [Google Scholar] [CrossRef]
- Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. Electrically rotating suspended films of polar liquids. Exp. Fluids 2011, 50, 419–428. [Google Scholar] [CrossRef]
- Shirsavar, R.; Amjadi, A.; Ejtehadi, M.; Mozaffari, M.; Feiz, M. Rotational regimes of freely suspended liquid crystal films under electric current in presence of an external electric field. Microfluid. Nanofluidics 2012, 13, 83–89. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, G.C.; Li, Y.J.; Jiang, S.R. Water film motor driven by alternating electric fields: Its dynamical characteristics. Phys. Rev. E 2012, 85, 036314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Li, Y.J.; Gan, K.Y.; Jiang, S.R.; Zhang, G.C. Water film washers and mixers: Their rotational modes and electro-hydrodynamical flows induced by square-wave electric fields. Microfluid. Nanofluidics 2013, 14, 319–328. [Google Scholar] [CrossRef]
- Nasiri, M.; Shirsavar, R.; Saghaei, T.; Ramos, A. Simulation of liquid film motor: A charge induction mechanism. Microfluid. Nanofluidics 2015, 19, 133–139. [Google Scholar] [CrossRef]
- Feiz, M.; Namin, R.; Amjadi, A. Theory of the liquid film motor. Phys. Rev. E 2015, 92, 033002. [Google Scholar] [CrossRef]
- Smallwood, I. Handbook of Organic Solvent Properties; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Wohlfarth, C.; Wohlfarth, B. Pure Liquids: Data: Datasheet from Landolt-Börnstein—Group IV Physical Chemistry: Volume 16: “Surface Tension of Pure Liquids and Binary Liquid Mixtures” in SpringerMaterials; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Ziadan, K.M.; Hussein, H.F.; Ajeel, K. Study of the electrical characteristics of poly (o-toluidine) and application in solar cell. Energy Procedia 2012, 18, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Bolotnikov, M.F.; Bolotnikova, S.S. Kinematic viscosity of 1-iodohexane, 1-iodoheptane, and 1-chlorononane at temperatures from (293.15 to 423.15) K. J. Chem. Eng. Data 2006, 51, 1740–1742. [Google Scholar] [CrossRef]
- Wohlfarth, C. Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to IV/6; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 17. [Google Scholar]
- Robert, C.W.; Astle, M.J.; William, H.B.; Lide, D.R. Crc Handbook of Chemistry and Physics a Ready Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Gui, L.; Merzkirch, W. A comparative study of the MQD method and several correlation-based PIV evaluation algorithms. Exp. Fluids 2000, 28, 36–44. [Google Scholar]
- Daya, Z.A.; Deyirmenjian, V.; Morris, S.W. Electrically driven convection in a thin annular film undergoing circular Couette flow. Phys. Fluids 1999, 11, 3613–3628. [Google Scholar] [CrossRef] [Green Version]
- Najafi, A.; Shirsavar, R. Liquid-film Motor: Physical Mechanism. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
Name | (mN/m) | (mPa·s) | () | |
---|---|---|---|---|
1,4-Dioxane | 2.9 | 33 | 1.2 | 1.03 |
1-Bromo-4-fluorobenzene | 2.6 | 33.8 | 17.77 | 1.6 |
1-Phenylhexane | 2.3 | NA | NA | 0.86 |
cis-Decahydronaphthalene | 2.1 | 30 | 1.788 | 0.9 |
Dodecane | 2.0 | 24.90 | 1.34 | 0.75 |
Mesitylene | 2.2 | 28.80 | 0.727 | 0.86 |
1-Dodecene | 2.1 | 26.6 | NA | 0.76 |
Styrene | 2.4 | 32 | 0.0696 | 0.91 |
Nonyl Chloride | 4.1 | 28.1 | 1.4 | 0.87 |
Name | (mN/m) | (mPa·s) | () | |
---|---|---|---|---|
1,2-Dichlorobenzene | 10.1 | 35.7 | 1.324 | 1.3 |
1,3-Dichlorobenzene | 5.0 | 36.2 | 1.044 | 1.28 |
Aniline | 7.0 | 43.4 | 2.92 | 1.02 |
Benzonitrile | 25.9 | 39 | 1.26 | 1.01 |
Benzyl chloride | 6.8 | 39.36 | 1.28 | 1.53 |
Ethyl benzoate | 6.0 | 35 | NA | 1.05 |
O-toluidinea | 6.1 | 43.55 | 0.339 | 1 |
Pyridine | 13.2 | 38 | 0.88 | 0.98 |
n-Butanol (1-Butanol) | 17.84 | 25 | 2.573 | 0.81 |
1-Nonanol | 8.8 | 28 | 9.51 | 0.83 |
1-Methyl 2-pyrrolidone | 32.5 | 40.8 | 1.686 | 1.03 |
1-Octanal | 10.3 | 27.9 | 1.26 | 0.82 |
2,5-Hexanedione | 5.6 | 31.6 | 1.43 | 0.97 |
Acetic acid | 6.2 | 27 | 1.22 | 1.04 |
Diethyl oxalate | 8.2 | NA | 1.622 | 1.07 |
Diiodomethane | 5.3 | 50.8 | 2.6 | 3.32 |
Dimethyl sulfoxide | 47.2 | 43.54 | NA | 1.1 |
Ethylene glycol | 41.4 | 47.7 | 16.1 | 1.11 |
N,Ndimethylformamide | 38.2 | 36.42 | 0.79 | 0.94 |
Water | 81 | 71.97 | 0.89 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirsavar, R.; Mollaei, S.; Moeini Rizi, M.; Moradi, A.-R.; Amjadi, A.; Habibi, M.; Najafi, A. Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film. Appl. Mech. 2022, 3, 78-87. https://doi.org/10.3390/applmech3010005
Shirsavar R, Mollaei S, Moeini Rizi M, Moradi A-R, Amjadi A, Habibi M, Najafi A. Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film. Applied Mechanics. 2022; 3(1):78-87. https://doi.org/10.3390/applmech3010005
Chicago/Turabian StyleShirsavar, Reza, Saeid Mollaei, Mansoure Moeini Rizi, Ali-Reza Moradi, Ahmad Amjadi, Mehdi Habibi, and Ali Najafi. 2022. "Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film" Applied Mechanics 3, no. 1: 78-87. https://doi.org/10.3390/applmech3010005
APA StyleShirsavar, R., Mollaei, S., Moeini Rizi, M., Moradi, A. -R., Amjadi, A., Habibi, M., & Najafi, A. (2022). Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film. Applied Mechanics, 3(1), 78-87. https://doi.org/10.3390/applmech3010005