Extracorporeal Organ Support for Burn-Injured Patients
Abstract
:1. Introduction
2. Kidney Replacement Therapy (KRT)
2.1. Indications/Initiation
2.2. CKRT Modality
2.3. CKRT Dosing
2.4. CKRT Anticoagulation
2.5. Discontinuation of Therapy
3. Extracorporeal Membrane Oxygenation (ECMO)
4. Extracorporeal Carbon Dioxide Removal
5. Extracorporeal Blood Purification
5.1. Total Plasma Exchange (TPE)
5.2. Pathogen Removal
5.3. Cell-Directed Extracorporeal Therapy
5.4. Endotoxin, Cytokine, and PAMP Adsorption
6. Military Relevance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Burn Association. Annual Burn Injury Summary Report 2022 Update; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Culnan, D.M.; Sherman, W.C.; Chung, K.K.; Wolf, S.E. Critical care in the severely burned: Organ support and management of complications. In Total Burn Care, 8th ed.; Herndon, D.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 328–354. [Google Scholar]
- Brusselaers, N.; Monstrey, S.; Colpaert, K.; Decruyenaere, J.; Blot, S.I.; Hoste, E.A. Outcome of acute kidney injury in severe burns: A systematic review and meta-analysis. Intensive Care Med. 2010, 36, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.; Stewart, I.J.; Gisler, C.; Simmons, J.W.; Aden, J.K.; Tilley, M.A.; Cotant, C.L.; White, C.E.; Wolf, S.E.; Renz, E.M. The Acute Kidney Injury Network (AKIN) criteria applied in burns. J. Burn Care Res. 2012, 33, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.J.; Tilley, M.A.; Cotant, C.L.; Aden, J.K.; Gisler, C.; Kwan, H.K.; McCorcle, J.; Renz, E.M.; Chung, K.K. Association of AKI with adverse outcomes in burned military casualties. Clin. J. Am. Soc. Nephrol. 2012, 7, 199–206. [Google Scholar] [CrossRef]
- Mosier, M.J.; Pham, T.N.; Klein, M.B.; Gibran, N.S.; Arnoldo, B.D.; Gamelli, R.L.; Tompkins, R.G.; Herndon, D.N. Early acute kidney injury predicts progressive renal dysfunction and higher mortality in severely burned adults. J. Burn Care Res. 2010, 31, 83–92. [Google Scholar] [CrossRef]
- Dai, T.; Cao, S.; Yang, X. Comparison of clinical efficacy between continuous renal replacement therapy and intermittent haemodialysis for the treatment of sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2016, 28, 277–280. [Google Scholar]
- Hill, D.M.; Rizzo, J.A.; Aden, J.K.; Hickerson, W.L.; Chung, K.K. Continuous Venovenous Hemofiltration is Associated with Improved Survival in Burn Patients with Shock: A Subset Analysis of a Multicenter Observational Study. Blood Purif. 2021, 50, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Bagshaw, S.M.; Lumlertgul, N.; Wald, R. Indications for and Timing of Initiation of KRT. Clin. J. Am. Soc. Nephrol. 2023, 18, 113–120. [Google Scholar] [CrossRef]
- The STARRT-AKI Investigators. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N. Engl. J. Med. 2020, 383, 240–251. [Google Scholar] [CrossRef]
- Tsotsolis, S.; Lavrentieva, A.; Greenhalgh, D. Optimizing the Timing of Renal Replacement Therapy in Burn Patients with Acute Kidney Injury. Burns 2023, 49, 247–260. [Google Scholar] [CrossRef]
- Tandukar, S.; Palevsky, P.M. Continuous Renal Replacement Therapy: Who, When, Why, and How. Chest 2019, 155, 626–638. [Google Scholar] [CrossRef]
- Palevsky, P.M.; Zhang, J.H.; O’Connor, T.Z.; Chertow, G.M.; Crowley, S.T.; Choudhury, D.; Finkel, K.; Kellum, J.A.; Paganini, E.; Schein, R.M.; et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 2008, 359, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.; Coates, E.C.; Hickerson, W.L.; Arnold-Ross, A.L.; Caruso, D.M.; Albrecht, M.; Arnoldo, B.D.; Howard, C.; Johnson, L.S.; McLawhorn, M.M.; et al. Renal Replacement Therapy in Severe Burns: A Multicenter Observational Study. J. Burn Care Res. 2018, 39, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Junhai, Z.; Beibei, C.; Jing, Y.; Li, L. Effect of High-Volume Hemofiltration in Critically Ill Patients: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2019, 25, 3964–3975. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, P.; Zhang, H.; Smail, N.; Pauwels, D.; Vincent, J.L. Continuous venovenous hemofiltration improves cardiac performance by mechanisms other than tumor necrosis factor-alpha attenuation during endotoxic shock. Crit. Care Med. 1999, 27, 1848–1855. [Google Scholar] [CrossRef]
- Bellomo, R.; Kellum, J.A.; Gandhi, C.R.; Pinsky, M.R.; Ondulik, B. The effect of intensive plasma water exchange by hemofiltration on hemodynamics and soluble mediators in canine endotoxemia. Am. J. Respir. Crit. Care Med. 2000, 161, 1429–1436. [Google Scholar] [CrossRef]
- Chung, K.K.; Coates, E.C.; Smith, D.J., Jr.; Karlnoski, R.A.; Hickerson, W.L.; Arnold-Ross, A.L.; Mosier, M.J.; Halerz, M.; Sprague, A.M.; Mullins, R.F.; et al. High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: A multicenter randomized controlled trial. Crit. Care 2017, 21, 289. [Google Scholar] [CrossRef]
- Zarbock, A.; Küllmar, M.; Kindgen-Milles, D.; Wempe, C.; Gerss, J.; Brandenburger, T.; Dimski, T.; Tyczynski, B.; Jahn, M.; Mülling, N.; et al. Effect of Regional Citrate Anticoagulation vs. Systemic Heparin Anticoagulation during Continuous Kidney Replacement Therapy on Dialysis Filter Life Span and Mortality among Critically Ill Patients with Acute Kidney Injury: A Randomized Clinical Trial. JAMA 2020, 324, 1629–1639. [Google Scholar] [CrossRef]
- Schiffl, H. Discontinuation of renal replacement therapy in critically ill patients with severe acute kidney injury: Predictive factors of renal function recovery. Int. Urol. Nephrol. 2018, 50, 1845–1851. [Google Scholar] [CrossRef]
- Stads, S.; Kant, K.M.; de Jong, M.F.C.; de Ruijter, W.; Cobbaert, C.M.; Betjes, M.G.H.; Gommers, D.; Oudemans-van Straaten, H.M. Predictors of short-term successful discontinuation of continuous renal replacement therapy: Results from a prospective multicentre study. BMC Nephrol. 2019, 20, 129. [Google Scholar] [CrossRef]
- Eldredge, R.S.; Zhai, Y.; Cochran, A. Effectiveness of ECMO for burn-related acute respiratory distress syndrome. Burns 2019, 45, 317–321. [Google Scholar] [CrossRef]
- Cartotto, R.; Li, Z.; Hanna, S.; Spano, S.; Wood, D.; Chung, K.; Camacho, F. The Acute Respiratory Distress Syndrome (ARDS) in mechanically ventilated burn patients: An analysis of risk factors, clinical features, and outcomes using the Berlin ARDS definition. Burns 2016, 42, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Extracorporeal Life Support Organization. ECLS Registry Report. 2023. Available online: https://www.elso.org/registry/internationalsummaryandreports/internationalsummary.aspx (accessed on 2 July 2023).
- Ainsworth, C.R.; Dellavolpe, J.; Chung, K.K.; Cancio, L.C.; Mason, P. Revisiting extracorporeal membrane oxygenation for ARDS in burns: A case series and review of the literature. Burns 2018, 44, 1433–1438. [Google Scholar] [CrossRef]
- Kennedy, J.D.; Thayer, W.; Beuno, R.; Kohorst, K.; Kumar, A.B. ECMO in major burn patients: Feasibility and considerations when multiple modes of mechanical ventilation fail. Burns Trauma 2017, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.R.; Chan, T.; McMullan, D.M. Extracorporeal Life Support Use in Adult Burn Patients. J. Burn Care Res. 2017, 38, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, S.; Maybauer, D.M.; Fraser, J.F.; Jennings, K.; George, S.; Keiralla, A.; Maybauer, M.O. Extracorporeal membrane oxygenation in burn and smoke inhalation injury. Burns 2013, 39, 429–435. [Google Scholar] [CrossRef]
- Chiu, Y.J.; Huang, Y.C.; Chen, T.W.; King, Y.A.; Ma, H. A Systematic Review and Meta-Analysis of Extracorporeal Membrane Oxygenation in Patients with Burns. Plast. Reconstr. Surg. 2022, 149, 1181e–1190e. [Google Scholar] [CrossRef]
- Heng, X.; Cai, P.; Yuan, Z.; Peng, Y.; Luo, G.; Li, H. Efficacy and safety of extracorporeal membrane oxygenation for burn patients: A comprehensive systematic review and meta-analysis. Burns Trauma 2023, 11, tkac056. [Google Scholar] [CrossRef]
- Hebert, S.; Erdogan, M.; Green, R.S.; Rasmussen, J. The Use of Extracorporeal Membrane Oxygenation in Severely Burned Patients: A Survey of North American Burn Centers. J. Burn Care Res. 2022, 43, 462–467. [Google Scholar] [CrossRef]
- Vaquer, S.; de Haro, C.; Peruga, P.; Oliva, J.C.; Artigas, A. Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann. Intensive Care 2017, 7, 51. [Google Scholar] [CrossRef]
- Marcus, J.E.; Piper, L.C.; Ainsworth, C.R.; Sams, V.G.; Batchinsky, A.; Okulicz, J.F.; Barsoumian, A.E. Infections in patients with burn injuries receiving extracorporeal membrane oxygenation. Burns 2019, 45, 1880–1887. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; Mccarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) without Anticoagulation: A Systematic Review. ASAIO J. 2021, 67, 290–296. [Google Scholar] [CrossRef] [PubMed]
- McNamee, J.J.; Gillies, M.A.; Barrett, N.A.; Perkins, G.D.; Tunnicliffe, W.; Young, D.; Bentley, A.; Harrison, D.A.; Brodie, D.; Boyle, A.J.; et al. Effect of Lower Tidal Volume Ventilation Facilitated by Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation on 90-Day Mortality in Patients with Acute Hypoxemic Respiratory Failure: The REST Randomized Clinical Trial. JAMA 2021, 326, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Fanelli, V.; Pham, T.; Ranieri, V.M. Feasibility and safety of extracorporeal CO(2) removal to enhance protective ventilation in acute respiratory distress syndrome: The SUPERNOVA study. Intensive Care Med. 2019, 45, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Bein, T.; Weber-Carstens, S.; Goldmann, A.; Müller, T.; Staudinger, T.; Brederlau, J.; Muellenbach, R.; Dembinski, R.; Graf, B.M.; Wewalka, M.; et al. Lower tidal volume strategy (≈3 mL/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 mL/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive Care Med. 2013, 39, 847–856. [Google Scholar] [CrossRef]
- Morales-Quinteros, L.; Del Sorbo, L.; Artigas, A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure. Ann. Intensive Care 2019, 9, 79. [Google Scholar] [CrossRef]
- Jayaraman, A.L.; Cormican, D.; Shah, P.; Ramakrishna, H. Cannulation strategies in adult veno-arterial and veno-venous extracorporeal membrane oxygenation: Techniques, limitations, and special considerations. Ann. Card. Anaesth. 2017, 20 (Suppl. S1), S11–S18. [Google Scholar] [CrossRef]
- Monard, C.; Abraham, P.; Schneider, A.; Rimmelé, T. New Targets for Extracorporeal Blood Purification Therapies in Sepsis. Blood Purif. 2023, 52, 1–7. [Google Scholar] [CrossRef]
- Mosier, M.J.; DeChristopher, P.J.; Gamelli, R.L. Use of therapeutic plasma exchange in the burn unit: A review of the literature. J. Burn Care Res. 2013, 34, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.B.; Edwards, J.A.; Kramer, C.B.; Nester, T.; Heimbach, D.M.; Gibran, N.S. The beneficial effects of plasma exchange after severe burn injury. J. Burn Care Res. 2009, 30, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Ninnemann, J.L.; Stratta, R.J.; Warden, G.D.; Saffle, J.R.; Weber, M.E. The effect of plasma exchange on lymphocyte suppression after burn. Arch. Surg. 1984, 119, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, M.; Warden, G.D.; Sullivan, J.J.; Saffle, J.R. A randomized trial of plasma exchange in the treatment of burn shock. J. Burn Care Rehabil. 1989, 10, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Warden, G.D.; Stratta, R.J.; Saffle, J.R.; Kravitz, M.; Ninnemann, J.L. Plasma exchange therapy in patients failing to resuscitate from burn shock. J. Trauma 1983, 23, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Neff, L.P.; Allman, J.M.; Holmes, J.H. The use of theraputic plasma exchange (TPE) in the setting of refractory burn shock. Burns 2010, 36, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Chitty, S.A.; Mobbs, S.; Rifkin, B.S.; Stogner, S.W.; Lewis, M.S.; Betancourt, J.; DellaVolpe, J.; Abouzahr, F.; Wilhelm, A.M.; Szerlip, H.M.; et al. A Multicenter Evaluation of the Seraph 100 Microbind Affinity Blood Filter for the Treatment of Severe COVID-19. Crit. Care Explor. 2022, 4, e0662. [Google Scholar] [CrossRef] [PubMed]
- Dommett, R.M.; Klein, N.; Turner, M.W. Mannose-binding lectin in innate immunity: Past, present and future. Tissue Antigens 2006, 68, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Didar, T.F.; Cartwright, M.J.; Rottman, M.; Graveline, A.R.; Gamini, N.; Watters, A.L.; Leslie, D.C.; Mammoto, T.; Rodas, M.J.; Kang, J.H.; et al. Improved treatment of systemic blood infections using antibiotics with extracorporeal opsonin hemoadsorption. Biomaterials 2015, 67, 382–392. [Google Scholar] [CrossRef]
- Tullis, R.H.; Duffin, R.P.; Handley, H.H.; Sodhi, P.; Menon, J.; Joyce, J.A.; Kher, V. Reduction of hepatitis C virus using lectin affinity plasmapheresis in dialysis patients. Blood Purif. 2009, 27, 64–69. [Google Scholar] [CrossRef]
- Moins-Teisserenc, H.; Cordeiro, D.J.; Audigier, V.; Ressaire, Q.; Benyamina, M.; Lambert, J.; Maki, G.; Homyrda, L.; Toubert, A.; Legrand, M. Severe Altered Immune Status After Burn Injury Is Associated with Bacterial Infection and Septic Shock. Front. Immunol. 2021, 12, 586195. [Google Scholar] [CrossRef]
- Ding, F.; Song, J.H.; Jung, J.Y.; Lou, L.; Wang, M.; Charles, L.; Westover, A.; Smith, P.L.; Pino, C.J.; Buffington, D.A.; et al. A Biomimetic Membrane Device That Modulates the Excessive Inflammatory Response to Sepsis. PLoS ONE 2011, 6, e18584. [Google Scholar] [CrossRef]
- Humes, H.D.; Sobota, J.T.; Ding, F.; Song, J.H. A Selective Cytopheretic Inhibitory Device to Treat the Immunological Dysregulation of Acute and Chronic Renal Failure. Blood Purif. 2010, 29, 183–190. [Google Scholar] [CrossRef]
- Tumlin, J.A.; Chawla, L.; Tolwani, A.J.; Mehta, R.; Dillon, J.; Finkel, K.W.; DaSilva, J.R.; Astor, B.C.; Yevzlin, A.S.; Humes, H.D. The Effect of the Selective Cytopheretic Device on Acute Kidney Injury Outcomes in the Intensive Care Unit: A Multicenter Pilot Study. Semin. Dial. 2013, 26, 616–623. [Google Scholar] [CrossRef]
- Tumlin, J.A.; Galphin, C.M.; Tolwani, A.J.; Chan, M.R.; Vijayan, A.; Finkel, K.; Szamosfalvi, B.; Dev, D.; DaSilva, J.R.; Astor, B.C.; et al. A Multi-Center, Randomized, Controlled, Pivotal Study to Assess the Safety and Efficacy of a Selective Cytopheretic Device in Patients with Acute Kidney Injury. PLoS ONE 2015, 10, e0132482. [Google Scholar] [CrossRef]
- Goldstein, S.L.; Askenazi, D.J.; Basu, R.K.; Selewski, D.T.; Paden, M.L.; Krallman, K.A.; Kirby, C.L.; Mottes, T.A.; Terrell, T.; Humes, H.D. Use of the Selective Cytopheretic Device in Critically Ill Children. Kidney Int. Rep. 2021, 6, 775–784. [Google Scholar] [CrossRef]
- Yessayan, L.; Humes, H.D.; Scribe, E.C.; Iyer, S.P.N.; Chung, K.K. Rationale and Design of NEUTRALIZE-AKI—A Multi-Center, Randomized, Controlled, Pivotal Study to Assess the Safety and Efficacy of a Selective Cytopheretic Device in Patients with Acute Kidney Injury Requiring Continuous Kidney Replacement Therapy. Nephron 2024, 148, 43–53. [Google Scholar] [CrossRef]
- Monard, C.; Rimmelé, T.; Ronco, C. Extracorporeal Blood Purification Therapies for Sepsis. Blood Purif. 2019, 47 (Suppl. S3), 2–15. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients with Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef]
- Peng, Y.; Yuan, Z.; Li, H. Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis. Burns 2005, 31, 623–628. [Google Scholar] [CrossRef]
- Nakada, T.A.; Oda, S.; Matsuda, K.; Sadahiro, T.; Nakamura, M.; Abe, R.; Hirasawa, H. Continuous hemodiafiltration with PMMA Hemofilter in the treatment of patients with septic shock. Mol. Med. 2008, 14, 257–263. [Google Scholar] [CrossRef]
- Gruda, M.C.; Ruggeberg, K.G.; O’Sullivan, P.; Guliashvili, T.; Scheirer, A.R.; Golobish, T.D.; Capponi, V.J.; Chan, P.P. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS ONE 2018, 13, e0191676. [Google Scholar] [CrossRef]
- Schädler, D.; Pausch, C.; Heise, D.; Meier-Hellmann, A.; Brederlau, J.; Weiler, N.; Marx, G.; Putensen, C.; Spies, C.; Jörres, A.; et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017, 12, e0187015. [Google Scholar] [CrossRef]
- Brouwer, W.P.; Duran, S.; Kuijper, M.; Ince, C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: A propensity-score-weighted retrospective study. Crit. Care 2019, 23, 317. [Google Scholar] [CrossRef]
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11. [Google Scholar] [CrossRef]
- Kallinen, O.; Maisniemi, K.; Böhling, T.; Tukiainen, E.; Koljonen, V. Multiple organ failure as a cause of death in patients with severe burns. J. Burn Care Res. 2012, 33, 206–211. [Google Scholar] [CrossRef]
- Nielson, C.B.; Duethman, N.C.; Howard, J.M.; Moncure, M.; Wood, J.G. Burns: Pathophysiology of systemic complications and current management. J. Burn Care Res. 2017, 38, 469–481. [Google Scholar] [CrossRef]
- Read, M.D.; Nam, J.J.; Biscotti, M.; Piper, L.C.; Thomas, S.B.; Sams, V.G.; Elliott, B.S.; Negaard, K.A.; Lantry, J.H.; DellaVolpe, J.D.; et al. Evolution of the United States Military Extracorporeal Membrane Oxygenation Transport Team. Mil. Med. 2020, 185, e2055–e2060. [Google Scholar] [CrossRef]
- Dittman, K.; Pearson, D. Crossing the Pond: Transcontinental Continuous Renal Replacement Therapy in Modern Warfare. Chest 2019, 156 (Suppl. S4), A167. [Google Scholar] [CrossRef]
- Zonies, D.; DuBose, J.; Elterman, J.; Bruno, T.; Benjamin, C.; Cannon, J.; Chung, K.K. Early implementation of continuous renal replacement therapy optimizes casualty evacuation for combat-related acute kidney injury. J. Trauma Acute Care Surg. 2013, 75 (Suppl. S2), S210–S214. [Google Scholar] [CrossRef]
- Driscoll, I.R.; Wallace, A.; Rosario, F.A.; Hensley, S.; Cline, K.D.; Chung, K.K. Continuous Veno-Venous Hemofiltration during Intercontinental Aeromedical Evacuation. Mil. Med. 2018, 183 (Suppl. S1), 189–192. [Google Scholar] [CrossRef]
Usual Dosing | Dosing in Burns | High Volume Hemofiltration |
---|---|---|
25–30 mL/kg/h | 30–40 mL/kg/h | >45 mL/kg/h |
Hypoxemic respiratory failure with PaO2/FiO2 < 80 mm Hg, after optimal medical management. |
Hypercapnic respiratory failure with pH < 7.25, despite optimal conventional mechanical ventilation. |
Ventilatory support as a bridge to lung transplantation or primary graft dysfunction following lung transplant |
Parameter | ECCO2R | VV-ECMO |
---|---|---|
Typical blood flow rate | 250–450 mL/min | 1000 mL/min–5000 mL/min |
Typical cannula size | One dual-lumen cannula (13–23 Fr) | Two single-lumen cannulas (21–29 Fr) or one dual-lumen cannula (27–31 Fr) |
Anticoagulation required | Regional/systemic | Systemic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britton, G.W.; Keith, A.R.; Halgas, B.J.; Boster, J.M.; Niazi, N.S.; Chung, K.K.; Cancio, L.C. Extracorporeal Organ Support for Burn-Injured Patients. Eur. Burn J. 2024, 5, 66-76. https://doi.org/10.3390/ebj5020006
Britton GW, Keith AR, Halgas BJ, Boster JM, Niazi NS, Chung KK, Cancio LC. Extracorporeal Organ Support for Burn-Injured Patients. European Burn Journal. 2024; 5(2):66-76. https://doi.org/10.3390/ebj5020006
Chicago/Turabian StyleBritton, Garrett W., Amanda R. Keith, Barret J. Halgas, Joshua M. Boster, Nicholas S. Niazi, Kevin K. Chung, and Leopoldo C. Cancio. 2024. "Extracorporeal Organ Support for Burn-Injured Patients" European Burn Journal 5, no. 2: 66-76. https://doi.org/10.3390/ebj5020006
APA StyleBritton, G. W., Keith, A. R., Halgas, B. J., Boster, J. M., Niazi, N. S., Chung, K. K., & Cancio, L. C. (2024). Extracorporeal Organ Support for Burn-Injured Patients. European Burn Journal, 5(2), 66-76. https://doi.org/10.3390/ebj5020006