Size Effects on Pumping Rates in High Microbial versus Low Microbial Abundance Marine Sponges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sponge Data
2.2. Analysis of Size Effects on Sponge Pumping
3. Results
3.1. Scaling Analyses
3.2. Removing the Effects of Size on Rate Functions
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Done, T.J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 1992, 247, 121–132. [Google Scholar] [CrossRef]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwskyj, N.; Prachett, M.S.; Steneck, R.S.; Willis, B. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 2017, 17, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Norström, A.V.; Nyström, M.; Lokrantz, J.; Folke, C. Alternative states on coral reefs: Beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 2009, 376, 295–306. [Google Scholar] [CrossRef]
- Dudgeon, S.R.; Aronson, R.B.; Bruno, J.F.; Precht, W.F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 2010, 413, 201–216. [Google Scholar] [CrossRef]
- Bell, J.J.; Davy, S.K.; Jones, T.; Taylor, M.W.; Webster, N.S. Could some coral reefs become sponge reefs as our climate changes? Glob. Clim. Change 2013, 19, 2613–2624. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.J.; Bennett, H.M.; Rovellini, A.; Webster, N.S. Sponges to be winners under near-future climate scenarios. BioScience 2018, 68, 955–968. [Google Scholar] [CrossRef]
- Bell, J.J.; Rovellini, A.; Davy, S.K.; Taylor, M.W.; Fulton, E.A.; Dunn, M.R.; Bennett, H.M.; Kandler, N.M.; Luter, H.M.; Webster, N.S. Climate change alterations to ecosystem dominance: How might sponge-dominated reefs function? Ecology 2018, 99, 1920–1931. [Google Scholar] [CrossRef]
- De Goeij, J.M.; Van Oevelen, D.; Vermeij, M.J.; Osinga, R.; Middelburg, J.J.; de Goeij, A.F.; Admiraal, W. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 2013, 342, 108–110. [Google Scholar] [CrossRef]
- De Goeij, J.M.; Lesser, M.P.; Pawlik, J.R. Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean. In Climate Change, Ocean Acidification and Sponges; Carballo, J.L., Bell, J.J., Eds.; Springer International: Berlin/Heidelberg, Germany, 2017; pp. 373–410. [Google Scholar]
- Lesser, M.P.; Slattery, M. Will coral reef sponges be winners in the Anthropocene? Glob. Change Biol. 2020, 26, 3202–3211. [Google Scholar] [CrossRef]
- Pankey, M.S.; Plachetzki, D.C.; Macartney, K.J.; Gastaldi, M.; Slattery, M.; Gochfeld, D.J.; Lesser, M.P. Cophylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat. Ecol. Evol. 2022, 6, 750–762. [Google Scholar] [CrossRef]
- Lesser, M.P.; Pankey, M.S.; Slattery, M.; Macartney, K.J.; Gochfeld, D.J. Sponge microbiome diversity and metabolic capacity determines the trophic ecology of the holobiont in Caribbean sponges. ISME Commun. 2022, 2, 112. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef]
- Thacker, R.W.; Freeman, C.J. Sponge-microbe symbioses: Recent advances and new directions. Adv. Mar. Biol. 2012, 62, 57–112. [Google Scholar] [PubMed]
- Hentschel, U.; Fieseler, L.; Wehrl, M.; Gernert, C.; Steinert, M.; Hacker, J.; Horn, M. Microbial diversity of marine sponges. Prog. Mol. Subcell. Biol. 2003, 37, 59–88. [Google Scholar] [PubMed]
- Moitinho-Silva, L.; Steinert, G.; Nielsen, S.; Hardoim, C.C.P.; Wu, Y.-C.; McCormack, G.P. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 2017, 8, 752. [Google Scholar] [CrossRef] [PubMed]
- Weisz, J.B.; Lindquist, N.; Martens, C.S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities. Oecologia 2008, 155, 367–376. [Google Scholar] [CrossRef]
- Rix, L.; Ribes, M.; Coma, R.; Jahn, M.T.; de Goeij, J.M.; van Oevelen, D.; Escrig, S.; Meibom, A.; Hentschel, U. Heterotrophy in the earliest gut: A single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020, 14, 2554–2567. [Google Scholar] [CrossRef]
- McMurray, S.E.; Stubler, A.D.; Erwin, P.M.; Finelli, C.M.; Pawlik, J.R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 2018, 588, 1–14. [Google Scholar] [CrossRef]
- Peters, R.H. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983; pp. 1–329. [Google Scholar]
- Schmidt-Nielson, K. Scaling: Why is Animal Size So Important? Cambridge University Press: Cambridge, UK, 1984; pp. 1–256. [Google Scholar]
- Gantt, S.E.; McMurray, S.E.; Stubler, A.D.; Finelli, C.M.; Pawlik, J.R.; Erwin, P.M. Testing the relationship between microbiome composition and flux of carbon and nutrients in Caribbean coral reef sponges. Microbiome 2019, 7, 124. [Google Scholar] [CrossRef]
- Reiswig, H.M. Particle feeding in natural populations of three marine demosponges. Biol. Bullet. 1971, 141, 568–591. [Google Scholar] [CrossRef]
- Morganti, T.M.; Ribes, M.; Yahel, G.; Coma, R. Size is the major determinant of pumping rates in marine sponges. Front. Physiol. 2019, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, M. Body size and metabolism. Hilgardia 1932, 6, 315–353. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, J. Metabolic theories in ecology. Trends Ecol. Evol. 2006, 21, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R.; Taylor, C.R.; Hoppeler, H. The concept of symmorphosis: A testable hypothesis of structure-function relationship. Proc. Natl. Acad. Sci. USA 1991, 88, 10357–10361. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H. The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 2005, 208, 1575–1592. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, G.M.; Charnov, E.L. Effects of size and temperature on metabolic rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef]
- Glazier, D.S. The ¾-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience 2006, 56, 325–332. [Google Scholar] [CrossRef]
- White, C.R.; Cassey, P.; Blackburn, T.M. Allometric exponents do not support a universal metabolic allometry. Ecology 2007, 88, 315–323. [Google Scholar] [CrossRef]
- Apol, M.E.F.; Etienne, R.S.; Olff, H. Revisiting the evolutionary origin of allometric metabolic scaling in biology. Funct. Ecol. 2008, 22, 1070–1080. [Google Scholar] [CrossRef]
- Agutter, P.A.; Wheatley, D.N. Metabolic scaling: Consensus or controversy? Theoret. Biol. Med. Model. 2004, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.R. A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 1992, 255, 1421–1423. [Google Scholar] [CrossRef]
- Shick, J.M. A Functional Biology of Sea Anemones; Chapman and Hall: London, UK, 1991; pp. 1–395. [Google Scholar]
- Lesser, M.P. Benthic–pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 2006, 328, 277–288. [Google Scholar] [CrossRef]
- Trussell, G.C.; Lesser, M.P.; Patterson, M.R.; Genovese, S.J. Depth-specific differences in growth of the reef sponge Calyspongia vaginalis: Role of bottom-up effects. Mar. Ecol. Prog. Ser. 2006, 323, 149–158. [Google Scholar] [CrossRef]
- Morganti, T.M.; Ribes, M.; Maskovich, R.; Weisz, J.B.; Yahel, G.; Coma, R. In Situ pumping rate of 20 marine demosponges is a function of osculum area. Front. Mar. Sci. 2021, 8, 583188. [Google Scholar] [CrossRef]
- Macartney, K.J.; Clayshute-Abraham, A.; Slattery, M.; Lesser, M.P. Growth and feeding in the Sponge, Agelas tubulata, from shallow to mesophotic depths on Grand Cayman Island. Ecosphere 2021, 12, e03764. [Google Scholar] [CrossRef]
- LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 1989, 20, 97–117. [Google Scholar] [CrossRef]
- Abraham, A.C.; Gochfeld, D.G.; Macartney, K.; Mellor, A.; Lesser, M.P.; Slattery, M. Biochemical variability in sponges across the Caribbean basin. Invert. Biol. 2021, 140, e12341. [Google Scholar]
- Glazier, D.S. Complications with body-size correction in comparative biology: Possible solutions and an appeal for new approaches. J. Exp. Biol. 2022, 225, jeb243313. [Google Scholar] [CrossRef]
- Packard, G.C.; Boardman, T.J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 1988, 61, 1–9. [Google Scholar] [CrossRef]
- Packard, G.C.; Boardman, T.J. The use of percentages and size-specific indices to normalize physiological data for variation in body size: Wasted time, wasted effort? Comp. Biochem. Phys. 1999, 122, 37–44. [Google Scholar] [CrossRef]
- Packard, G.C. On the use of logarithmic transformations in allometric analyses. J. Theor. Biol. 2009, 257, 515–518. [Google Scholar] [CrossRef]
- Packard, G.C. Misconceptions about logarithmic transformation and the traditional allometric method. Zoology 2017, 123, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.J.; Enquist, B.J. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [Google Scholar] [CrossRef]
- McArdle, B.H. The structural relationship: Regression in biology. Can. J. Zool. 1988, 66, 2329–2339. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, I.J.; Falster, D.S.; Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 2006, 81, 259–291. [Google Scholar] [CrossRef]
- White, C.R.; Kearney, M.R. Metabolic scaling in animals: Methods, empirical results, and theoretical explanations. Compr. Physiol. 2014, 4, 231–256. [Google Scholar]
- Riisgård, H.U.; Larsen, P.S. Filtration rates and scaling in demosponges. J. Mar. Sci. Eng. 2022, 10, 643. [Google Scholar] [CrossRef]
- Maldonado, M.; Ribes, M.; van Duyl, F.C. Nutrient fluxes through sponges: Biology, budgets, and ecological implications. Adv. Mar. Biol. 2012, 62, 113–182. [Google Scholar]
- Poppell, E.; Weisz, J.; Spicer, L.; Massaro, A.; Hill, A.; Hill, M. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 2014, 35, 414–424. [Google Scholar] [CrossRef]
- Mills, D.B.; Canfield, D.E. A trophic framework for animal origins. Geobiology 2016, 15, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Sperling, E.A.; Stockey, R.G. The temporal and environmental context of early animal evolution: Considering all the ingredients of an “explosion”. Integr. Comp. Biol. 2018, 58, 605–622. [Google Scholar] [CrossRef]
- Larsen, P.S.; Riisgård, H.U. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms. J. Exp. Mar. Biol. Ecol. 2009, 381, 67–73. [Google Scholar] [CrossRef]
- Asadzadeh, S.S.; Kiørboe, T.; Larsen, P.S.; Leys, S.P.; Yahel, G.; Walther, J.H. Hydrodynamics of sponge pumps and evolution of the sponge body plan. eLife 2020, 9, e61012. [Google Scholar] [CrossRef] [PubMed]
- Dahihande, A.S.; Thakur, N.L. Differences in the structural components influence the pumping capacity of marine sponges. Front. Mar. Sci. 2021, 8, 671362. [Google Scholar] [CrossRef]
- Asadzadeh, S.S.; Larsen, P.S.; Riisgård, H.U.; Walther, J.H. Hydrodynamics of the leucon sponge pump. J. R. Soc. Interface 2019, 16, 20180603. [Google Scholar] [CrossRef]
- Wilkinson, C.R. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 1987, 4, 135–146. [Google Scholar]
- Morganti, T.; Coma, R.; Yahel, G.; Ribes, M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 2017, 62, 1963–1983. [Google Scholar] [CrossRef]
Region | Class | Order | Family | Species | Symbiotic Phenotype * |
---|---|---|---|---|---|
Mediterranean Sea | Demospongiae | Dictyoceratida | Dysideidae | Dysidea avara | LMA |
Demospongiae | Poecilosclerida | Crambeidae | Crambe crambe | LMA | |
Demospongiae | Haplosclerida | Petrosiidae | Petrosia ficiformis | HMA | |
Demospongiae | Chondrosiida | Chondrosiidae | Chondrosia reniformis | HMA | |
Demospongiae | Agelasida | Agelasidae | Agelas oroides | HMA | |
Florida Keys and Belize | Demospongiae | Agelasida | Agelasidae | Agelas conifera/tubulata | HMA |
Demospongiae | Haplosclerida | Callyspongiidae | Callyspongia vaginalis | LMA | |
Demospongiae | Verongiida | Aplysinidae | Aplysina archeri | HMA | |
Demospongiae | Haplosclerida | Callyspongiidae | Callyspongia plicifera | LMA | |
Demospongiae | Dictyoceratida | Irciniidae | Ircinia strobilina | HMA | |
Demospongiae | Haplosclerida | Niphitidae | Niphates digitalis | LMA | |
Demospongiae | Haplosclerida | Petrosiidae | Xestospongia muta | HMA | |
Demospongiae | Clionaida | Clionaidae | Spheciospongia vesparium | HMA | |
Demospongiae | Verongiida | Aplysinidae | Verongula gigantea | HMA | |
Demospongiae | Verongiida | Aplysinidae | Verongula reiswigi | HMA | |
Demospongiae | Poecilosclerida | Mycalidae | Mycale laxissima | LMA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesser, M.P. Size Effects on Pumping Rates in High Microbial versus Low Microbial Abundance Marine Sponges. Oceans 2023, 4, 394-408. https://doi.org/10.3390/oceans4040027
Lesser MP. Size Effects on Pumping Rates in High Microbial versus Low Microbial Abundance Marine Sponges. Oceans. 2023; 4(4):394-408. https://doi.org/10.3390/oceans4040027
Chicago/Turabian StyleLesser, Michael P. 2023. "Size Effects on Pumping Rates in High Microbial versus Low Microbial Abundance Marine Sponges" Oceans 4, no. 4: 394-408. https://doi.org/10.3390/oceans4040027
APA StyleLesser, M. P. (2023). Size Effects on Pumping Rates in High Microbial versus Low Microbial Abundance Marine Sponges. Oceans, 4(4), 394-408. https://doi.org/10.3390/oceans4040027