Future Changes in Western North Pacific Tropical Cyclone Genesis Environment in High-Resolution Large-Ensemble Simulations
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Characteristics of Current TCs Stratified by TCG Environmental Factors
3.2. Characteristics of Future TCs Stratified by TCG Environmental Factors
3.3. Future Changes in Environmental Physical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yoshida, K.; Sugi, M.; Mizuta, R.; Murakami, H.; Ishii, M. Future Changes in Tropical Cyclone Activity in High-Resolution Large-Ensemble Simulations. Geophys. Res. Lett. 2017, 44, 9910–9917. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Chang-Hoi, H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteor. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Roberts, M.J.; Vidale, P.L.; Mizielinski, M.S.; Demory, M.-E.; Schiemann, R.; Strachan, J.; Hodges, K.; Bell, R.; Camp, J. Tropical Cyclones in the UPSCALE Ensemble of High-Resolution Global Climate Models. J. Clim. 2015, 28, 574–596. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Zhang, L.; Karnauskas, K.B.; Donnelly, J.P.; Emanuel, K. Response of the North Pacific Tropical Cyclone Climatology to Global Warming: Application of Dynamical Downscaling to CMIP5 Models. J. Clim. 2017, 30, 1233–1243. [Google Scholar] [CrossRef]
- Ritchie, E.A.; Holland, G.J. Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Weather Rev. 1999, 127, 2027–2043. [Google Scholar] [CrossRef]
- Lander, M.A. Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Weather Forecast. 1994, 9, 640–654. [Google Scholar] [CrossRef]
- Chen, S.S.; Houze, R.A., Jr.; Mapes, B.E. Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci. 1996, 53, 1380–1409. [Google Scholar] [CrossRef] [Green Version]
- Heta, Y. An analysis of tropical wind fields in relation to typhoon formation over the western Pacific. J. Meteor. Soc. Jpn. 1990, 68, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Heta, Y. The origin of tropical disturbances in the equatorial Pacific. J. Meteorol. Soc. Jpn. 1991, 69, 337–351. [Google Scholar] [CrossRef] [Green Version]
- McDonald, N.R. The decay of cyclonic eddies by Rossby wave radiation. J. Fluid Mech. 1998, 361, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Fu, B. Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci. 2006, 63, 1377–1389. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Ge, X.; Wang, B.; Zhu, Y. Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part II: Numerical simulations. J. Atmos. Sci. 2006, 63, 1390–1409. [Google Scholar] [CrossRef]
- Yoshida, R.; Ishikawa, H. Environmental factors contributing to tropical cyclone genesis over the Western north Pacific. Mon. Weather Rev. 2013, 141, 451–467. [Google Scholar] [CrossRef]
- Onogi, K. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007, 85, 369–432. [Google Scholar] [CrossRef] [Green Version]
- Fudeyasu, H.; Yoshida, R. Western North Pacific Tropical Cyclone Characteristics Stratified by Genesis Environment. Mon. Weather Rev. 2018, 146, 435–446. [Google Scholar] [CrossRef]
- Yamada, Y.; Oouchi, K.; Satoh, M.; Tomita, H.; Yanase, W. Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Camargo, S.; Tippett, J.; Michael, K.; Sobel, A.; Vecchi, H.; Gabriel, A.; Zhao, M. Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J. Clim. 2014, 27, 9171–9196. [Google Scholar] [CrossRef]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Makiguchi, M.; Hosaka, M.; Sugi, S.; Yukimoto, S.; et al. Climate simulations using MRI-AGCM3.2 with 20-km Grid. J. Meteorol. Soc. Jpn. 2012, 90A, 233–258. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 2014, 27, 57–75. [Google Scholar] [CrossRef]
- Mizuta, R.; Murata, A.; Ishii, M.; Shiogama, H.; Hibino, K.; Mori, N.; Arakawa, O.; Imada, Y.; Yoshida, K.; Aoyagi, T.; et al. Over 5000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models. Bull. Amer. Meteorol. Soc. 2017, 98, 1383–1398. [Google Scholar] [CrossRef]
- Murakami, H.; Mizuta, R.; Shindo, E. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim. Dyn. 2012, 39, 2569–2584. [Google Scholar] [CrossRef] [Green Version]
- Fudeyasu, H.; Yoshida, R. Statistical Analysis of the Relationship between Upper Tropospheric Cold Lows and Tropical Cyclone Genesis over the Western North Pacific. J. Meteorol. Soc. Jpn. 2019, 97, 439–451. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Yokoi, S.; Takayabu, Y.N. Multi-model projection of global warming impact on tropical cyclone genesis frequency over the Western North Pacific. J. Meteorol. Soc. Jpn. 2009, 87, 525–538. [Google Scholar] [CrossRef] [Green Version]
- Sugi, M.; Yamada, Y.; Yoshida, K.; Mizuta, R.; Nakano, M.; Kodama, C.; Satoh, M. Future changes in the global frequency of tropical cyclones seeds. SOLA 2020, 16, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Khairoutdinov, M.F.; Emanuel, K. Rotating radiative-convective equilibrium sismulated by a cloud-resolving model. J. Adv. Model. Earth Sys. 2013, 5, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Vecchi, G.A.; Knutson, T.R.; Anderson, W.G.; Delworth, T.L.; Rosati, A.; Zeng, F.; Zhao, M. 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 2014, 27, 8034–8054. [Google Scholar] [CrossRef]
- Yamada, Y.; Satoh, M.; Sugi, M.; Kodama, C.; Noda, A.T.; Nakano, M.; Nasuno, T. Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. J. Clim. 2017, 30, 9703–9724. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Bruyere, C.L.; Done, J.; Garre, L.; Friis-Hansen, P.; Veldore, V. Changes in hurricanes from a 13-yr convection-permitting pseudo-global warming simulation. J. Clim. 2018, 31, 3643–3657. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Chan, J.C.; Yoshida, K.; Mizuta, R. Global warming changes tropical cyclone translation speed. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, H.; Wang, B.; Kitoh, A. Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Clim. 2011, 24, 1154–1169. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, S.; Takahashi, C.; Yasunaga, K.; Shirooka, R. Multi-model projection of tropical cyclone genesis frequency over the Western North Pacific: CMIP5 results. SOLA 2012, 8, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, L. Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient and implications for tropical cyclone activity. Earth’s Future 2018, 6, 919–936. [Google Scholar] [CrossRef]
- Li, X.; Ting, M.; Li, C.; Henderson, N. Mechanisms of Asian Summer Monsoon Changes in Response to Anthropogenic Forcing in CMIP5 Models. J. Clim. 2015, 28, 4107–4125. [Google Scholar] [CrossRef]
- Zhang, L.; Li, T. Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys. Res. Lett. 2016, 43, 5295–5301. [Google Scholar] [CrossRef]
ALL | SL | CR | GY | EW | PTC | UCF | |
---|---|---|---|---|---|---|---|
Longitude at TCG time (°N) | 137.4 | 135.2 | 141.0 | 132.9 | 140.6 | 141.4 | 138.8 |
Latitude at TCG time (°E) | 16.6 | 16.6 | 17.2 | 16.3 | 17.7 | 13.5 | 17.6 |
TC size at TCG time (km) | 333.5 | 343.2 | 321.7 | 349.2 | 317.0 | 262.1 | 358.6 |
Development rate (m s−1 6 h−1) | 0.61 | 0.63 | 0.56 | 0.55 | 0.60 | 0.69 | 0.55 |
Movement speed (km h−1) | 16.0 | 15.4 | 16.6 | 14.7 | 17.5 | 17.6 | 15.6 |
Duration of development (day) | 3.1 | 3.2 | 3.3 | 2.9 | 3.0 | 3.3 | 2.8 |
LMI (m s−1) | 25.9 | 26.4 | 25.4 | 23.4 | 25.8 | 27.8 | 22.4 |
ALL | SL | CR | GY | EW | PTC | UCF | |
---|---|---|---|---|---|---|---|
Longitude at TCG time (°N) | 138.5 | 137.2 | 141.8 | 133.8 | 140.0 | 141.1 | 144.0 |
+1.1 | +2.0 | +0.8 | +0.9 | −0.6 | −0.3 | +5.2 | |
Latitude at TCG time (°E) | 18.1 | 18.0 | 18.9 | 17.9 | 19.2 | 15.3 | 19.3 |
+1.5 | +1.4 | +1.7 | +1.6 | +1.5 | +1.8 | +1.7 | |
TC size at TCG time (km) | 352.2 | 364.8 | 332.7 | 367.2 | 330.7 | 285.6 | 371.8 |
+18.7 | +21.6 | +11.0 | +18.0 | +13.7 | +23.5 | +13.2 | |
Development rate (m s−1 6 h−1) | 0.91 | 0.94 | 0.82 | 0.80 | 0.93 | 0.97 | 0.78 |
+0.30 | +0.31 | +0.26 | +0.25 | +0.33 | +0.28 | +0.23 | |
Movement speed (km h−1) | 16.1 | 15.7 | 16.7 | 15.2 | 17.3 | 16.7 | 16.3 |
+0.1 | +0.3 | +0.1 | +0.5 | −0.2 | −0.9 | +0.7 | |
Duration of development (day) | 2.6 | 2.7 | 2.7 | 2.4 | 2.5 | 2.8 | 2.3 |
−0.5 | −0.5 | −0.6 | −0.5 | −0.5 | −0.5 | −0.5 | |
LMI (m s−1) | 29.1 | 29.8 | 27.6 | 26.3 | 30.1 | 30.6 | 24.6 |
+3.2 | +3.4 | +2.2 | +2.9 | +4.3 | +2.8 | +2.2 |
ALL | SL | CR | GY | EW | PTC | UCF | |
---|---|---|---|---|---|---|---|
SST at TCG time (K) | 301.9 | 301.9 | 302.1 | 301.8 | 301.8 | 301.7 | 301.8 |
SHR at TCG time (m s−1) | 13.5 | 13.7 | 13.5 | 13.5 | 13.3 | 13.5 | 13.6 |
HMD at TCG time (kg kg−1) | 4.14 | 4.18 | 4.25 | 4.17 | 3.86 | 4.04 | 4.09 |
VOR850 at TCG time (×10−5 s−1) | 2.71 | 2.83 | 2.56 | 2.60 | 2.49 | 2.86 | 2.45 |
SST at mature time (K) | 301.0 | 301.0 | 301.0 | 301.1 | 300.8 | 300.7 | 301.0 |
SHR at mature time (m s−1) | 17.9 | 18.1 | 17.9 | 17.2 | 17.6 | 18.0 | 17.1 |
HMD at mature time (kg kg−1) | 3.73 | 3.78 | 3.83 | 3.85 | 3.44 | 3.44 | 3.72 |
VOR850 at mature time (×10−5 s−1) | 3.34 | 3.43 | 3.40 | 3.14 | 2.99 | 3.47 | 3.05 |
ALL | SL | CR | GY | EW | PTC | UCF | |
---|---|---|---|---|---|---|---|
SST at TCG time (K) | 304.9 | 304.9 | 305.0 | 304.8 | 304.7 | 304.8 | 304.8 |
+3.0 | +3.0 | +2.9 | +3.0 | +2.9 | +3.0 | +3.0 | |
SHR at TCG time (m s−1) | 14.1 | 14.2 | 13.7 | 14.2 | 13.9 | 14.4 | 14.4 |
+0.6 | +0.5 | +0.5 | +0.8 | +0.5 | +0.5 | +0.8 | |
HMD at TCG time (kg kg−1) | 5.81 | 5.87 | 5.95 | 5.78 | 5.47 | 5.69 | 5.65 |
+1.66 | +1.69 | +1.70 | +1.62 | +1.61 | +1.66 | +1.56 | |
VOR850 at TCG time (×10−5 s−1) | 3.10 | 3.23 | 2.90 | 2.92 | 2.96 | 3.21 | 2.78 |
+0.39 | +0.40 | +0.34 | +0.32 | +0.47 | +0.35 | +0.33 | |
SST at mature time(K) | 304.0 | 304.1 | 304.0 | 304.2 | 303.9 | 304.0 | 304.1 |
+3.1 | +3.1 | +3.0 | +3.1 | +3.1 | +3.2 | +3.0 | |
SHR at mature time (m s−1) | 18.1 | 18.3 | 17.9 | 17.7 | 18.2 | 18.4 | 17.3 |
+0.3 | +0.2 | +0.0 | +0.5 | +0.6 | +0.2 | +0.2 | |
HMD at mature time (kg kg−1) | 5.27 | 5.36 | 5.45 | 5.34 | 4.86 | 4.89 | 5.31 |
+1.54 | +1.57 | +1.61 | +1.49 | +1.42 | +1.45 | +1.50 | |
VOR850 at mature time (×10−5 s−1) | 3.76 | 3.89 | 3.73 | 3.48 | 3.47 | 3.84 | 3.28 |
+0.42 | +0.46 | +0.33 | +0.34 | +0.48 | +0.37 | +0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fudeyasu, H.; Yoshida, K.; Yoshida, R. Future Changes in Western North Pacific Tropical Cyclone Genesis Environment in High-Resolution Large-Ensemble Simulations. Oceans 2020, 1, 355-368. https://doi.org/10.3390/oceans1040024
Fudeyasu H, Yoshida K, Yoshida R. Future Changes in Western North Pacific Tropical Cyclone Genesis Environment in High-Resolution Large-Ensemble Simulations. Oceans. 2020; 1(4):355-368. https://doi.org/10.3390/oceans1040024
Chicago/Turabian StyleFudeyasu, Hironori, Kohei Yoshida, and Ryuji Yoshida. 2020. "Future Changes in Western North Pacific Tropical Cyclone Genesis Environment in High-Resolution Large-Ensemble Simulations" Oceans 1, no. 4: 355-368. https://doi.org/10.3390/oceans1040024
APA StyleFudeyasu, H., Yoshida, K., & Yoshida, R. (2020). Future Changes in Western North Pacific Tropical Cyclone Genesis Environment in High-Resolution Large-Ensemble Simulations. Oceans, 1(4), 355-368. https://doi.org/10.3390/oceans1040024