Future Changes in Tropical Cyclone and Easterly Wave Characteristics over Tropical North America
Abstract
:1. Introduction
2. Data and Methods
2.1. Reanalysis, TC Tracks, and Tropical Rainfall Attribution
2.2. Regional Climate Model Configuration
2.3. Criteria for Tracking Tropical Cyclones and Easterly Waves in Model Outputs
2.3.1. Criteria for Tropical Cyclones and Attribution of Rainfall
- The sum of the horizontal temperature difference between the storm and its surroundings at 700 mb, 500 mb, and 300 mb is greater than 2 K.
- The mean 850 mb wind speed is greater than the mean 300 mb wind speed.
- The 300 mb horizontal temperature difference between the storm and its surroundings is greater than that at 850 mb.
- The genesis location must be south of 40° N.
- The vorticity centers should retain tropical storm wind intensity for a minimum of 36 h.
- A threshold of wind speed at 10 m should be met: 12 m/s was for all KF simulations and 10 m/s for all other simulations [7].
2.3.2. Criteria for Easterly Waves and Attribution of Rainfall
- Westward movement;
- A lifetime of at least 2 days;
- The first detected points are over the oceanic domain 5–20° N;
- Vorticity centers are or greater;
- Systems travel at least 1000 km;
- Wind speed at 10 m should be less than 12 m/s for all KF simulations and should be less than 10 m/s for all other simulations.
2.3.3. The Kolmogorov–Smirnov Two-Sample Test
3. Results
3.1. Future Changes in Sea Surface Temperatures and Tropical Precipitation
3.2. Changes in Tropical Cyclones Features: Rainfall and Track Density
3.3. Changes in Easterly Wave Features: Seasonal Precipitation, Track Density, and Tropical Cyclogenesis
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiang, S.; Camargo, S. Tropical Cyclones: From the Influence of Climate to Their Socioeconomic Impacts. In Extreme Events: Observations, Modeling, and Economics; Geophysical Monograph 214; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; pp. 303–342. [Google Scholar] [CrossRef]
- National Center for Disaster Prevention (CENAPRED). Desastres en México. 2019. Available online: http://www.cenapred.unam.mx/es/Publicaciones/archivos/318-INFOGRAFADESASTRESENMXICO-IMPACTOSOCIALYECONMICO.PDF (accessed on 13 April 2021).
- Dominguez, C.; Jaramillo, A.; Cuéllar, P. Are the Socioeconomic Impacts Associated with Tropical Cyclones in Mexico Exacerbated by Local Vulnerability and ENSO Conditions? Int. J. Climatol. 2021, 41, E3307–E3324. [Google Scholar] [CrossRef]
- Dominguez, C.; Magaña, V. The Role of Tropical Cyclones in Precipitation Over the Tropical and Subtropical North America. Front. Earth Sci. 2018, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Held, I.M. TC-Permitting GCM Simulations of Hurricane Frequency Response to Sea Surface Temperature Anomalies Projected for the Late-Twenty-First Century. J. Clim. 2012, 25, 2995–3009. [Google Scholar] [CrossRef]
- Murakami, H.; Hsu, P.-C.; Arakawa, O.; Li, T. Influence of Model Biases on Projected Future Changes in Tropical Cyclone Frequency of Occurrence. J. Clim. 2014, 27, 2159–2181. [Google Scholar] [CrossRef]
- Bruyère, C.L.; Rasmussen, R.; Gutmann, E.; Done, J.; Tye, M.; Jaye, A.; Prein, A.; Mooney, P.; Ge, M.; Fredrick, S.; et al. Impact of Climate Change on Gulf of Mexico Hurricanes; NCAR Technical Notes; National Center for Atmospheric Research: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Torres-Alavez, J.A.; Glazer, R.; Giorgi, F.; Coppola, E.; Gao, X.; Hodges, K.I.; Das, S.; Ashfaq, M.; Reale, M.; Sines, T. Future Projections in Tropical Cyclone Activity Over Multiple CORDEX Domains from RegCM4 CORDEX-CORE Simulations. Clim. Dyn. 2021. [Google Scholar] [CrossRef]
- Bacmeister, J.T.; Wehner, M.F.; Neale, R.B.; Gettelman, A.; Hannay, C.; Lauritzen, P.H.; Caron, J.M.; Truesdale, J.E. Exploratory High-Resolution Climate Simulations Using the Community Atmosphere Model (CAM). J. Clim. 2014, 27, 3073–3099. [Google Scholar] [CrossRef]
- Wehner, M.F.; Reed, K.A.; Li, F.; Prabhat; Bacmeister, J.; Chen, C.-T.; Paciorek, C.; Gleckler, P.J.; Sperber, K.R.; Collins, W.D.; et al. The Effect of Horizontal Resolution on Simulation Quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 2014, 6, 980–997. [Google Scholar] [CrossRef]
- Bacmeister, J.T.; Reed, K.A.; Hannay, C.; Lawrence, P.; Bates, S.; Truesdale, J.E.; Rosenbloom, N.; Levy, M. Projected Changes in Tropical Cyclone Activity under Future Warming Scenarios Using a High-Resolution Climate Model. Clim. Chang. 2018, 146, 547–560. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model. Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- BAO, Q.; LIU, Y.; WU, G.; HE, B.; LI, J.; WANG, L.; WU, X.; CHEN, K.; WANG, X.; YANG, J.; et al. CAS FGOALS-F3-H and CAS FGOALS-F3-L Outputs for the High-Resolution Model Intercomparison Project Simulation of CMIP6. Atmos. Ocean. Sci. Lett. 2020, 13, 576–581. [Google Scholar] [CrossRef]
- Roberts, M.J.; Camp, J.; Seddon, J.; Vidale, P.L.; Hodges, K.; Vanniere, B.; Mecking, J.; Haarsma, R.; Bellucci, A.; Scoccimarro, E.; et al. Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. J. Clim. 2020, 33, 2557–2583. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J.; Camp, J.; Seddon, J.; Vidale, P.L.; Hodges, K.; Vannière, B.; Mecking, J.; Haarsma, R.; Bellucci, A.; Scoccimarro, E.; et al. Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett. 2020, 47, e2020GL088662. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.; Zhao, M.; Kim, H.-S.; Bender, M.; Tuleya, R.E.; Held, I.M.; Villarini, G. Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. J. Clim. 2013, 26, 6591–6617. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Am. Meteorol. Soc. 2019, 100, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Serra, Y.L.; Jiang, X.; Tian, B.; Amador-Astua, J.; Maloney, E.D.; Kiladis, G.N. Tropical Intraseasonal Modes of the Atmosphere. Annu. Rev. Environ. Resour. 2014, 39, 189–215. [Google Scholar] [CrossRef]
- Thorncroft, C.; Hodges, K. African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. J. Clim. 2001, 14, 1166–1179. [Google Scholar] [CrossRef]
- Serra, Y.L.; Kiladis, G.N.; Cronin, M.F. Horizontal and Vertical Structure of Easterly Waves in the Pacific ITCZ. J. Atmos. Sci. 2008, 65, 1266–1284. [Google Scholar] [CrossRef]
- Chen, T.-C.; Wang, S.-Y.; Clark, A.J. North Atlantic Hurricanes Contributed by African Easterly Waves North and South of the African Easterly Jet. J. Clim. 2008, 21, 6767–6776. [Google Scholar] [CrossRef]
- Agudelo, P.A.; Hoyos, C.D.; Curry, J.A.; Webster, P.J. Probabilistic Discrimination between Large-Scale Environments of Intensifying and Decaying African Easterly Waves. Clim. Dyn. 2011, 36, 1379–1401. [Google Scholar] [CrossRef]
- Schreck, C.J.; Molinari, J.; Aiyyer, A. A Global View of Equatorial Waves and Tropical Cyclogenesis. Mon. Weather Rev. 2012, 140, 774–788. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, C.; Done, J.M.; Bruyère, C.L. Easterly Wave Contributions to Seasonal Rainfall over the Tropical Americas in Observations and a Regional Climate Model. Clim. Dyn. 2020, 54, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Crétat, J.; Vizy, E.K.; Cook, K.H. The Relationship between African Easterly Waves and Daily Rainfall over West Africa: Observations and Regional Climate Simulations. Clim. Dyn. 2015, 44, 385–404. [Google Scholar] [CrossRef]
- Janiga, M.A.; Thorncroft, C.D. The Influence of African Easterly Waves on Convection over Tropical Africa and the East Atlantic. Mon. Weather Rev. 2016, 144, 171–192. [Google Scholar] [CrossRef]
- Martin, E.R.; Thorncroft, C. Representation of African Easterly Waves in CMIP5 Models. J. Clim. 2015, 28, 7702–7715. [Google Scholar] [CrossRef]
- Kebe, I.; Diallo, I.; Sylla, M.B.; De Sales, F.; Diedhiou, A. Late 21st Century Projected Changes in the Relationship between Precipitation, African Easterly Jet, and African Easterly Waves. Atmosphere 2020, 11, 353. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, J.-S.; Cook, K.H. A Study of the Energetics of African Easterly Waves Using a Regional Climate Model. J. Atmos. Sci. 2007, 64, 421–440. [Google Scholar] [CrossRef]
- Crosbie, E.; Serra, Y. Intraseasonal Modulation of Synoptic-Scale Disturbances and Tropical Cyclone Genesis in the Eastern North Pacific. J. Clim. 2014, 27, 5724–5745. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Jiang, H.; Zipser, E.J. Contribution of Tropical Cyclones to the Global Precipitation from Eight Seasons of TRMM Data: Regional, Seasonal, and Interannual Variations. J. Clim. 2010, 23, 1526–1543. [Google Scholar] [CrossRef]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of Tropical Cyclones to Rainfall at the Global Scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Done, J.M.; Holland, G.J.; Bruyère, C.L.; Leung, L.R.; Suzuki-Parker, A. Modeling High-Impact Weather and Climate: Lessons from a Tropical Cyclone Perspective. Clim. Chang. 2015, 129, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Pan, H.-L. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Nakicenovic, N.; O’Neill, B.C. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. In Proceedings of the IPCC Expert Meeting on New Scenarios, Noordwijkerhout, The Netherlands, 19–21 September 2007; Moss, R., Intergovernmental Panel on Climate Change, Eds.; IPCC Expert Meeting Report. Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008. ISBN 978-92-9169-125-8. [Google Scholar]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias Corrections of Global Models for Regional Climate Simulations of High-Impact Weather. Clim. Dyn. 2014, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Hodges, K.I. Feature Tracking on the Unit Sphere. Mon. Weather Rev. 1995, 123, 3458–3465. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; Fiorino, M.; Landsea, C.W.; McInnes, K.L. Objectively Determined Resolution-Dependent Threshold Criteria for the Detection of Tropical Cyclones in Climate Models and Reanalyses. J. Clim. 2007, 20, 2307–2314. [Google Scholar] [CrossRef]
- Serra, Y.L.; Kiladis, G.N.; Hodges, K.I. Tracking and Mean Structure of Easterly Waves over the Intra-Americas Sea. J. Clim. 2010, 23, 4823–4840. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences. In International Geophysics, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2011; Volume 100, ISBN 978-0-12-385022-5. [Google Scholar]
- Zhang, Y.; Fueglistaler, S. Mechanism for Increasing Tropical Rainfall Unevenness with Global Warming. Geophys. Res. Lett. 2019, 46, 14836–14843. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S.; Delworth, T.L.; Wittenberg, A.T.; Anderson, W.G.; Chen, J.-H.; Gudgel, R.G.; Harris, L.M.; Lin, S.-J.; et al. Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model. J. Clim. 2015, 28, 9058–9079. [Google Scholar] [CrossRef]
- Emanuel, K. Response of Global Tropical Cyclone Activity to Increasing CO2: Results from Downscaling CMIP6 Models. J. Clim. 2021, 34, 57–70. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Bruyere, C.L.; Done, J.M.; Garrè, L.; Friis-Hansen, P.; Veldore, V. Changes in Hurricanes from a 13-Yr Convection-Permitting Pseudo-Global Warming Simulation. J. Clim. 2018, 31, 3643–3657. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Durán-Quesada, A.M.; Sorí, R.; Ordoñez, P.; Gimeno, L. Climate Perspectives in the Intra-Americas Seas. Atmosphere 2020, 11, 959. [Google Scholar] [CrossRef]
- Imbach, P.; Locatelli, B.; Zamora, J.C.; Fung, E.; Calderer, L.; Molina, L.; Ciais, P. Impacts of Climate Change on Ecosystem Hydrological Services of Central America: Water Availability. In Climate Change Impacts on Tropical Forests in Central America: An Ecosystem Service Perspective; Aline, C., Ed.; Routledge Publishing: New York, NY, USA, 2015; ISBN 978-0-415-72080-9. [Google Scholar]
- Jaye, A.B.; Bruyère, C.L.; Done, J.M. Understanding Future Changes in Tropical Cyclogenesis Using Self-Organizing Maps. Weather Clim. Extrem. 2019, 26, 100235. [Google Scholar] [CrossRef]
- Landsea, C.W. A Climatology of Intense (or Major) Atlantic Hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. [Google Scholar] [CrossRef] [Green Version]
Cumulus Convection | Planet Boundary Layer | |
---|---|---|
Mellor–Yamada–Janjić (M) | Yonsei University (Y) | |
Kain Fritsch (K) | RKTM | |
New Simplified Arakawa–Schubert (N) | RNTY | |
Tiedtke (T) | RTTY |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, C.; Done, J.M.; Bruyère, C.L. Future Changes in Tropical Cyclone and Easterly Wave Characteristics over Tropical North America. Oceans 2021, 2, 429-447. https://doi.org/10.3390/oceans2020024
Dominguez C, Done JM, Bruyère CL. Future Changes in Tropical Cyclone and Easterly Wave Characteristics over Tropical North America. Oceans. 2021; 2(2):429-447. https://doi.org/10.3390/oceans2020024
Chicago/Turabian StyleDominguez, Christian, James M. Done, and Cindy L. Bruyère. 2021. "Future Changes in Tropical Cyclone and Easterly Wave Characteristics over Tropical North America" Oceans 2, no. 2: 429-447. https://doi.org/10.3390/oceans2020024
APA StyleDominguez, C., Done, J. M., & Bruyère, C. L. (2021). Future Changes in Tropical Cyclone and Easterly Wave Characteristics over Tropical North America. Oceans, 2(2), 429-447. https://doi.org/10.3390/oceans2020024