Fretting Wear and Corrosion-Related Risk Factors in Total Hip Replacement: A Literature Review on Implant Retrieval Studies and National Joint Replacement Registry Reports
Abstract
:1. Introduction
2. Implant Retrieval Studies
2.1. Patient Data in Retrieval Studies
2.2. Implant Data in Retrieval Studies
2.2.1. Implant Design
2.2.2. Materials Used for THR Implants
2.2.3. Implant Manufacturers
3. Risk Factors from a Joint Registries (JRs) Perspective
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herberts, P.; Malchau, H. Long-term registration has improved the quality of hip replacement: A review of the Swedish THR Register comparing 160,000 cases. Acta Orthop. Scand. 2000, 71, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.D. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. Arthritis Rheum. 2000, 43, 1905–1915. [Google Scholar]
- Madry, H. Surgical therapy in osteoarthritis. Osteoarthr. Cartil. 2022, 30, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Allepuz, A.; Havelin, L.; Barber, T.; Sedrakyan, A.; Graves, S.; Bordini, B.; Hoeffel, D.; Cafri, G.; Paxton, E. Effect of femoral head size on metal-on-HXLPE hip arthroplasty outcome in a combined analysis of six national and regional registries. J. Bone Jt. Surg. 2014, 96 (Suppl. S1), 12–18. [Google Scholar] [CrossRef]
- Hermansen, L.L.; Viberg, B.; Hansen, L.; Overgaard, S. “True” cumulative incidence of and risk factors for hip dislocation within 2 years after primary total hip arthroplasty due to osteoarthritis: A nationwide population-based study from the danish hip arthroplasty register. JBJS 2021, 103, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty Annual Report; AOA: Adelaide, Australia, 2020. [Google Scholar]
- De Martino, I.; Assini, J.B.; Elpers, M.E.; Wright, T.M.; Westrich, G.H. Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems. J. Arthroplast. 2015, 30, 1470–1475. [Google Scholar] [CrossRef]
- Mroczkowski, M.L.; Hertzler, J.S.; Humphrey, S.M.; Johnson, T.; Blanchard, C.R. Effect of impact assembly on the fretting corrosion of modular hip tapers. J. Orthop. Res. 2006, 24, 271–279. [Google Scholar] [CrossRef]
- Royhman, D.; Pourzal., R.; Hall., D.; Lundberg, H.J.; Wimmer, M.A.; Jacobs, J.; Hallab, N.J.; Mathew, M.T. Fretting-corrosion in hip taper modular junctions: The influence of topography and pH levels–An in-vitro study. J. Mech. Behav. Biomed. Mater. 2021, 118, 104443. [Google Scholar] [CrossRef]
- Dyrkacz, R.M.; Brandt, J.-M.; Ojo, O.A.; Turgeon, T.R.; Wyss, U.P. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J. Arthroplast. 2013, 28, 1036–1040. [Google Scholar] [CrossRef]
- Lombardo, D.J.; Siljander, M.P.; Gehrke, C.K.; Moore, D.D.; Karadsheh, M.S.; Baker, E.A. Fretting and Corrosion Damage of Retrieved Dual-Mobility Total Hip Arthroplasty Systems. J. Arthroplast. 2019, 34, 1273–1278. [Google Scholar] [CrossRef]
- Siljander, M.P.; Gehrke, C.K.; Wheeler, S.D.; Sobh, A.H.; Moore, D.D.; Flierl, M.A.; Baker, E.A. Does Taper Design Affect Taper Fretting Corrosion in Ceramic-on-Polyethylene Total Hip Arthroplasty? A Retrieval Analysis. J. Arthroplast. 2019, 34, S366–S372.e2. [Google Scholar] [CrossRef] [PubMed]
- Fallahnezhad, K.; Oskouei, R.H.; Badnava, H.; Taylor, M. The influence of assembly force on the material loss at the metallic head-neck junction of hip implants subjected to cyclic fretting wear. Metals 2019, 9, 422. [Google Scholar] [CrossRef]
- Fallahnezhad, K.; Feyzi, M.; Ghadirinejad, K.; Hashemi, R.; Taylor, M. Finite element based simulation of tribocorrosion at the head-neck junction of hip implants. Tribol. Int. 2022, 165, 107284. [Google Scholar] [CrossRef]
- Goldberg, J.R.; Gilbert, J.L.; Jacobs, J.J.; Bauer, T.W.; Paprosky, W.; Leurgans, S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 2002, 401, 149–161. [Google Scholar] [CrossRef]
- Wang, M.L.; Sharkey, P.F.; Tuan, R.S. Particle bioreactivity and wear-mediated osteolysis. J. Arthroplast. 2004, 19, 1028–1038. [Google Scholar] [CrossRef]
- Abu-Amer, Y.; Darwech, I.; Clohisy, J.C. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 2007, 9, S6. [Google Scholar] [CrossRef]
- Pritchett, J.W. Polyethylene for hip resurfacing—Worth a second look. Concern 2019, 3, 19. [Google Scholar] [CrossRef]
- Siljander, M.P.; Baker, E.A.; Baker, K.C.; Salisbury, M.R.; Thor, C.C.; Verner, J.J. Fretting and corrosion damage in retrieved metal-on-polyethylene modular total hip arthroplasty systems: What is the importance of femoral head size? J. Arthroplast. 2018, 33, 931–938. [Google Scholar] [CrossRef]
- McGee, M.A.; Howie, D.W.; Costi, K.; Haynes, D.R.; Wildenauer, C.I.; Pearcy, M.J.; McLean, J.D. Implant retrieval studies of the wear and loosening of prosthetic joints: A review. Wear 2000, 241, 158–165. [Google Scholar] [CrossRef]
- Lanting, B.; Naudie, D.D.; McCalden, R.W. Clinical impact of trunnion wear after total hip arthroplasty. JBJS Rev. 2016, 4, e3. [Google Scholar] [CrossRef]
- Mistry, J.B.; Chughtai, M.; Elmallah, R.K.; Diedrich, A.; Le, S.; Thomas, M.; Mont, M.A. Trunnionosis in total hip arthroplasty: A review. J. Orthop. Traumatol. 2016, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Di Prima, M.; Vesnovsky, O.; Kovacs, P.; Hopper, R.; Ho, H.; Engh, C.; Topoleski, L. Comparison of Visual Assessment Techniques for Wear and Corrosion in Modular Hip Replacement Systems. In Modularity and Tapers in Total Joint Replacement Devices; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Nassif, N.A.; Nawabi, D.H.; Stoner, K.; Elpers, M.; Wright, T.; Padgett, D.E. Taper design affects failure of large-head metal-on-metal total hip replacements. Clin. Orthop. Relat. Res. 2014, 472, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Hothi, H.S.; Berber, R.; Panagiotopoulos, A.C.; Whittaker, R.K.; Rhead, C.; Skinner, J.A.; Hart, A.J. Clinical significance of corrosion of cemented femoral stems in metal-on-metal hips: A retrieval study. Int. Orthop. 2016, 40, 2247–2254. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Kocagöz, S.B.; Hanzlik, J.A.; Underwood, R.J.; Gilbert, J.L.; MacDonald, D.W.; Lee, G.-C.; Mont, M.A.; Kraay, M.J.; Klein, G.R. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin. Orthop. Relat. Res. 2013, 471, 3270–3282. [Google Scholar] [CrossRef]
- Kop, A.; Keogh, C.; Swarts, E. Proximal component modularity in THA—At what cost?: An implant retrieval study. Clin. Orthop. Relat. Res. 2012, 470, 1885–1894. [Google Scholar] [CrossRef]
- Milimonfared, R.; Oskouei, R.H.; Taylor, M.; Solomon, L.B. An intelligent system for image-based rating of corrosion severity at stem taper of retrieved hip replacement implants. Med. Eng. Phys. 2018, 61, 13–24. [Google Scholar] [CrossRef]
- Milimonfared, R.; Oskouei, R.; Taylor, M.; Solomon, L. The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants. Metals 2018, 8, 840. [Google Scholar] [CrossRef]
- Milimonfared, R. Development and Implementation of an Artificial Intelligence System for Assessing Corrosion Damage at Stem Taper of Hip Replacement Implants: A Retrieval Study; Flinders University, College of Science and Engineering: Adelaide, Australia, 2019. [Google Scholar]
- Becker, L.D.; Floerkemeier, T.; Derksen, A.; Schwarze, M.; Budde, S.; Windhagen, H.; Wirries, N. Analysis of factors affecting the time for implantation of a total hip arthroplasty in patients with symptomatic primary and secondary hip osteoarthritis. Hip Int. 2022, 33, 672–677. [Google Scholar] [CrossRef]
- Saini, U.C.; Mehta, L.; Rangasamy, K.; Aggarwal, A.K. Does Preoperative Activity Level Affect Postoperative Outcomes Following Total Hip Arthroplasty? J. Arthroplast. 2023, 38, e5. [Google Scholar] [CrossRef]
- Nugent, M.; Young, S.W.; Frampton, C.M.; Hooper, G.J. The lifetime risk of revision following total hip arthroplasty: A new Zealand joint registry study. Bone Jt. J. 2021, 103, 479–485. [Google Scholar] [CrossRef]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.C.; Teeter, M.G.; Del Balso, C.; Howard, J.L.; Lanting, B.A. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J. Arthroplast. 2015, 30, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Lanting, B.A.; Teeter, M.G.; Vasarhelyi, E.M.; Ivanov, T.G.; Howard, J.L.; Naudie, D.D. Correlation of corrosion and biomechanics in the retrieval of a single modular neck total hip arthroplasty design: Modular neck total hip arthroplasty system. J. Arthroplast. 2015, 30, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-M.; Glyn-Jones, S.; Simpson, D.; Kamali, A.; McLardy-Smith, P.; Gill, H.; Murray, D. Analysis of wear of retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J. Bone Jt. Surg. 2010, 92, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Del Balso, C.; Teeter, M.; Tan, S.; Lanting, B.; Howard, J. Taperosis: Does head length affect fretting and corrosion in total hip arthroplasty? Bone Jt. J. 2015, 97, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.C.; Lau, A.C.; Del Balso, C.; Howard, J.L.; Lanting, B.A.; Teeter, M.G. Tribocorrosion: Ceramic and oxidized zirconium vs cobalt-chromium heads in total hip arthroplasty. J. Arthroplast. 2016, 31, 2064–2071. [Google Scholar] [CrossRef]
- Weiser, M.C.; Chen, D.D. Revision for taper corrosion at the neck-body junction following total hip arthroplasty: Pearls and pitfalls. Curr. Rev. Musculoskelet. Med. 2016, 9, 75–83. [Google Scholar] [CrossRef]
- Carlson, J.C.H.; Van Citters, D.W.; Currier, J.H.; Bryant, A.M.; Mayor, M.B.; Collier, J.P. Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips. J. Arthroplast. 2012, 27, 1389–1396.e1. [Google Scholar] [CrossRef]
- Langton, D.; Jameson, S.; Joyce, T.; Gandhi, J.; Sidaginamale, R.; Mereddy, P.; Lord, J.; Nargol, A. Accelerating failure rate of the ASR total hip replacement. J. Bone Jt. Surg. 2011, 93, 1011–1016. [Google Scholar] [CrossRef]
- Meyer, H.; Mueller, T.; Goldau, G.; Chamaon, K.; Ruetschi, M.; Lohmann, C.H. Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin. Orthop. Relat. Res. 2012, 470, 3101–3108. [Google Scholar] [CrossRef]
- Swaminathan, V.; Gilbert, J.L. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. Biomaterials 2012, 33, 5487–5503. [Google Scholar] [CrossRef] [PubMed]
- Higgs, G.B.; Hanzlik, J.A.; MacDonald, D.W.; Gilbert, J.L.; Rimnac, C.M.; Kurtz, S.M.; Committee, I.R.C.W. Is increased modularity associated with increased fretting and corrosion damage in metal-on-metal total hip arthroplasty devices?: A retrieval study. J. Arthroplast. 2013, 28, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.; Ward, M.; Farrar, R.; Freeman, R.; Brummitt, K.; Nolan, J.; Neville, A. Failure analysis of cemented metal-on-metal total hip replacements from a single centre cohort. Wear 2013, 301, 226–233. [Google Scholar] [CrossRef]
- Lawrence, H.; Deehan, D.; Holland, J.; Kirby, J.; Tyson-Capper, A. The immunobiology of cobalt: Demonstration of a potential aetiology for inflammatory pseudotumours after metal-on-metal replacement of the hip. Bone Jt. J. 2014, 96, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Urban, R.M.; Gilbert, J.L.; Skipor, A.K.; Black, J. Local and distant products from modularity. Clin. Orthop. Relat. Res. 1995, 319, 94–105. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993, 27, 1533–1544. [Google Scholar] [CrossRef]
- Wolf, S.; Johannessen, A.C.; Ellison, P.; Furnes, O.; Hallan, G.; Rogg, K.; Skarstein, K.; Høl, P.J. Inflammatory tissue reactions around aseptically loose cemented hip prostheses: A retrieval study of the Spectron EF stem with reflection all-poly acetabular cup. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 1624–1636. [Google Scholar] [CrossRef]
- Balachandran, S.; Zachariah, Z.; Fischer, A.; Mayweg, D.; Wimmer, M.A.; Raabe, D.; Herbig, M. Atomic scale origin of metal ion release from hip implant taper junctions. Adv. Sci. 2020, 7, 1903008. [Google Scholar] [CrossRef]
- Knecht, C.; Polakof, L.; Behrens, J.; Goodman, S.B. Wear debris in metal-on-metal bearings and modular junctions: What have we learned from the last decades? Die Orthop. 2023, 52, 206–213. [Google Scholar] [CrossRef]
- Capitanu, L.; Badita, L.-L.; Tiganesteanu, C.; Florescu, V. The wear of the taper junction of the stem trunnion with the femoral head of a total modular hip prosthesis. J. Tribol. 2019, 23, 61–75. [Google Scholar]
- Garbuz, D.S.; Tanzer, M.; Greidanus, N.V.; Masri, B.A.; Duncan, C.P. The John Charnley Award: Metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: A randomized clinical trial. Clin. Orthop. Relat. Res. 2010, 468, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Visuri, T.; Borg, H.; Pulkkinen, P.; Paavolainen, P.; Pukkala, E. A retrospective comparative study of mortality and causes of death among patients with metal-on-metal and metal-on-polyethylene total hip prostheses in primary osteoarthritis after a long-term follow-up. BMC Musculoskelet. Disord. 2010, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Leslie, I.; Williams, S.; Brown, C.; Isaac, G.; Jin, Z.; Ingham, E.; Fisher, J. Effect of bearing size on the long-term wear, wear debris, and ion levels of large diameter metal-on-metal hip replacements—An in vitro study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 163–172. [Google Scholar] [CrossRef]
- Urban, R.M.; Gilbert, J.L.; Jacobs, J.J. Corrosion of modular titanium alloy stems in cementless hip replacement. In Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Kop, A.M.; Swarts, E. Corrosion of a hip stem with a modular neck taper junction: A retrieval study of 16 cases. J. Arthroplast. 2009, 24, 1019–1023. [Google Scholar] [CrossRef]
- Cook, S.D.; Barrack, R.L.; Clemow, A. Corrosion and wear at the modular interface of uncemented femoral stems. J. Bone Jt. Surg. 1994, 76, 68–72. [Google Scholar] [CrossRef]
- Paliwal, M.; Allan, D.G.; Filip, P. Failure analysis of three uncemented titanium-alloy modular total hip stems. Eng. Fail. Anal. 2010, 17, 1230–1238. [Google Scholar] [CrossRef]
- Crawford, D.A.; Adams, J.B.; Hobbs, G.R.; Morris, M.J.; Berend, K.R.; Lombardi, A.V., Jr. Does activity level after primary total hip arthroplasty affect aseptic survival? Arthroplast. Today 2021, 11, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Del Balso, C.; Teeter, M.G.; Tan, S.C.; Howard, J.L.; Lanting, B.A. Trunnionosis: Does head size affect fretting and corrosion in total hip arthroplasty? J. Arthroplast. 2016, 31, 2332–2336. [Google Scholar] [CrossRef]
- Wassef, A.; Schmalzried, T. Femoral taperosis: An accident waiting to happen? Bone Jt. J. 2013, 95, 3–6. [Google Scholar] [CrossRef]
- Jauch, S.Y.; Huber, G.; Sellenschloh, K.; Haschke, H.; Baxmann, M.; Grupp, T.M.; Morlock, M.M. Micromotions at the taper interface between stem and neck adapter of a bimodular hip prosthesis during activities of daily living. J. Orthop. Res. 2013, 31, 1165–1171. [Google Scholar] [CrossRef]
- Kwon, Y. Fretting corrosion in modular hip designs: Truths and consequences. In Proceedings of the Orthopaedic Proceedings, Atlanta, GA, USA, 12–14 September 2016; The British Editorial Society of Bone & Joint Surgery: London, UK, 2016; p. 48. [Google Scholar]
- Jauch, S.; Huber, G.; Haschke, H.; Sellenschloh, K.; Morlock, M. Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants. Med. Eng. Phys. 2014, 36, 300–307. [Google Scholar] [CrossRef]
- Viceconti, M.; Ruggeri, O.; Toni, A.; Giunti, A. Design-related fretting wear in modular neck hip prosthesis. J. Biomed. Mater. Res. 1996, 30, 181–186. [Google Scholar] [CrossRef]
- Cooper, H.J.; Urban, R.M.; Wixson, R.L.; Meneghini, R.M.; Jacobs, J.J. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J. Bone Jt. Surg. 2013, 95, 865. [Google Scholar] [CrossRef] [PubMed]
- Gill, I.; Webb, J.; Sloan, K.; Beaver, R. Corrosion at the neck-stem junction as a cause of metal ion release and pseudotumour formation. J. Bone Jt. Surg. 2012, 94, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.D.; Bono, J.V.; Nandi, S.; Ward, D.M.; Talmo, C.T. Adverse tissue reactions in modular exchangeable neck implants: A report of two cases. J. Arthroplast. 2013, 28, 543. [Google Scholar] [CrossRef]
- Lindgren, J.; Brismar, B.; Wikstrom, A. Adverse reaction to metal release from a modular metal-on-polyethylene hip prosthesis. J. Bone Jt. Surg. 2011, 93, 1427–1430. [Google Scholar] [CrossRef]
- Molloy, D.O.; Munir, S.; Jack, C.M.; Cross, M.B.; Walter, W.L.; Walter Sr, W.K. Fretting and corrosion in modular-neck total hip arthroplasty femoral stems. JBJS 2014, 96, 488–493. [Google Scholar] [CrossRef]
- Mella, C.; Diaz-Ledezma, C. What’s New in Hip Arthroplasty: South American Perspective. Recent Adv. Orthop. 2014, 234. [Google Scholar]
- Kwon, Y.-M.; Fehring, T.K.; Lombardi, A.V.; Barnes, C.L.; Cabanela, M.E.; Jacobs, J.J. Risk stratification algorithm for management of patients with dual modular taper total hip arthroplasty: Consensus statement of the American Association of Hip and Knee Surgeons, the American Academy of Orthopaedic Surgeons and the Hip Society. J. Arthroplast. 2014, 29, 2060–2064. [Google Scholar] [CrossRef]
- Pivec, R.; Meneghini, R.M.; Hozack, W.J.; Westrich, G.H.; Mont, M.A. Modular taper junction corrosion and failure: How to approach a recalled total hip arthroplasty implant. J. Arthroplast. 2014, 29, 1–6. [Google Scholar] [CrossRef]
- Fraitzl, C.R.; Moya, L.E.; Castellani, L.; Wright, T.M.; Buly, R.L. Corrosion at the stem-sleeve interface of a modular titanium alloy femoral component as a reason for impaired disengagement. J. Arthroplast. 2011, 26, 113–119.e1. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Bliss, J.; Calfee, R.P.; Froehlich, J.; Limbird, R. Modular femoral stem-sleeve junction failure after primary total hip arthroplasty. J. Arthroplast. 2009, 24, 1143. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, H.S.; Middleton, R.G. Controversial topics in orthopaedics: Ceramic-on-ceramic. Ann. R. Coll. Surg. Engl. 2005, 87, 415. [Google Scholar] [PubMed]
- Bragdon, C.R.; Kwon, Y.M.; Geller, J.A.; Greene, M.E.; Freiberg, A.A.; Harris, W.H.; Malchau, H. Minimum 6-year followup of highly cross-linked polyethylene in THA. Clin. Orthop. Relat. Res. 2007, 465, 122–127. [Google Scholar] [CrossRef]
- Fransen, B.L.; Bengoa, F.J.; Neufeld, M.E.; Sheridan, G.A.; Garbuz, D.S.; Howard, L.C. Thin highly cross-linked polyethylene liners combined with large femoral heads in primary total hip arthroplasty show excellent survival and low wear rates at a mean follow-up of 12.8 years. Bone Jt. J. 2023, 105, 29–34. [Google Scholar] [CrossRef]
- Moon, N.H.; Shin, W.C.; Do, M.U.; Kang, S.-W.; Lee, S.-M.; Suh, K.T. Wear and osteolysis outcomes for highly cross-linked polyethylene in primary total hip arthroplasty compared with conventional polyethylene: A 15-to 18-year single-centre follow-up study. HIP Int. 2021, 31, 526–532. [Google Scholar] [CrossRef]
- Amstutz, H.C.; Grigoris, P. Metal on metal bearings in hip arthroplasty. Clin. Orthop. Relat. Res. 1996, 329, S11–S34. [Google Scholar] [CrossRef]
- Bizot, P.; Nizard, R.; Hamadouche, M.; Hannouche, D.; Sedel, L. Prevention of wear and osteolysis: Alumina-on-alumina bearing. Clin. Orthop. Relat. Res. 2001, 393, 85–93. [Google Scholar] [CrossRef]
- McKee, G.; Watson-Farrar, J.J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J. Bone Jt. Surg. 1966, 48, 245–259. [Google Scholar] [CrossRef]
- Ring, P. Complete replacement arthroplasty of the hip by the ring prosthesis. J. Bone Jt. Surg. 1968, 50, 720–731. [Google Scholar] [CrossRef]
- de Steiger, R.; Peng, A.; Lewis, P.; Graves, S. What is the long-term survival for primary THA with small-head metal-on-metal bearings? Clin. Orthop. Relat. Res. 2018, 476, 1231. [Google Scholar] [CrossRef] [PubMed]
- Graves, S.E.; Rothwell, A.; Tucker, K.; Jacobs, J.J.; Sedrakyan, A. A multinational assessment of metal-on-metal bearings in hip replacement. J. Bone Jt. Surg. 2011, 93, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Cuckler, J.M. The rationale for metal-on-metal total hip arthroplasty. Clin. Orthop. Relat. Res. 2005, 441, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Archibeck, M.; Jacobs, J.; Roebuck, K.; Glant, T. The basic science of periprosthetic osteolysis. Instr. Course Lect. 2001, 50, 185–195. [Google Scholar] [CrossRef]
- Boutin, P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1972, 58, 229. [Google Scholar]
- Bierbaum, B.E.; Nairus, J.; Kuesis, D.; Morrison, J.C.; Ward, D. Ceramic-on-ceramic bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 2002, 405, 158–163. [Google Scholar] [CrossRef]
- Christel, P. Biocompatibility of surgical-grade dense polycrystalline alumina. Clin. Orthop. Relat. Res. 1992, 282, 10–18. [Google Scholar] [CrossRef]
- Knight, S.R.; Aujla, R.; Biswas, S.P. Total Hip Arthroplasty-over 100 years of operative history. Orthop. Rev. 2011, 3, e16. [Google Scholar]
- Semlitsch, M.; Willert, H. Clinical wear behaviour of ultra-high molecular weight polyethylene cups paired with metal and ceramic ball heads in comparison to metal-on-metal pairings of hip joint replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1997, 211, 73–88. [Google Scholar] [CrossRef]
- Capello, W.N.; D’Antonio, J.A.; Feinberg, J.R.; Manley, M.T.; Naughton, M. Ceramic-on-ceramic total hip arthroplasty: Update. J. Arthroplast. 2008, 23, 39–43. [Google Scholar] [CrossRef]
- Jarrett, C.A.; Ranawat, A.S.; Bruzzone, M.; Blum, Y.C.; Rodriguez, J.A.; Ranawat, C.S. The squeaking hip: A phenomenon of ceramic-on-ceramic total hip arthroplasty. J. Bone Jt. Surg. 2009, 91, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Mai, K.; Verioti, C.; Ezzet, K.A.; Copp, S.N.; Walker, R.H.; Colwell, C.W. Incidence of ‘squeaking’after ceramic-on-ceramic total hip arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.P.; Surprenant, V.A.; Jensen, R.E.; Mayor, M.B.; Surprenant, H.P. Corrosion between the components of modular femoral hip prostheses. J. Bone Jt. Surg. 1992, 74, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.; Jameson, S.; Joyce, T.; Hallab, N.; Natu, S.; Nargol, A. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear. J. Bone Jt. Surg. 2010, 92, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Browne, G.; Gie, G.; Ling, R.; Timperley, A.; Wendover, N. The Exeter universal cemented femoral component at 8 to 12 years: A study of the first 325 hips. J. Bone Jt. Surg. 2002, 84, 324–334. [Google Scholar] [CrossRef]
- Garellick, G.; Malchau, H.; Herberts, P. Survival of Hip Replacements: A Comparison of a Randomized Trial and a Registry. Clin. Orthop. Relat. Res. 2000, 375, 157–167. [Google Scholar] [CrossRef]
- Hussenbocus, S.; Kosuge, D.; Solomon, L.; Howie, D.; Oskouei, R. Head-neck taper corrosion in hip arthroplasty. BioMed. Res. Int. 2015, 2015, 758123. [Google Scholar] [CrossRef]
- Carli, A.; Politis, A.; Zukor, D.; Huk, O.; Antoniou, J. Clinically significant corrosion at the head-neck taper interface in total hip arthroplasty: A systematic review and case series. Hip Int. 2015, 25, 7–14. [Google Scholar] [CrossRef]
- Bolland, B.; Culliford, D.; Langton, D.; Millington, J.; Arden, N.; Latham, J. High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: Clinical, radiological and retrieval analysis. J. Bone Jt. Surg. 2011, 93, 608–615. [Google Scholar] [CrossRef]
- Collier, J.P.; Mayor, M.B.; Williams, I.R.; Surprenant, V.A.; Surprenant, H.P.; Currier, B.H. The tradeoffs associated with modular hip prostheses. Clin. Orthop. Relat. Res. 1995, 311, 91–101. [Google Scholar]
- National Joint Registry for England, Wales, Northern Ireland and the Isle of Man: 16th Annual Report 2019. Available online: Reports.njrcentre.org.uk/Portals/0/PDFdownloads/NJR 16th Annual Report 2019.pdf (accessed on 15 May 2022).
- McMinn, D. Birmingham Hip Resurfacing: Operative Technique. Birm. Midl. Med. Technol. 2001. Available online: https://www.orthoracle.com/content/uploads/2017/12/bhr-surgical-technique-04727-v2-45670103-revc-1.pdf (accessed on 23 June 2022).
- Peters, R.M.; Hiemstra, J.T.; Zijlstra, W.P.; Bulstra, S.K.; Stevens, M. To mix or not to mix? Medicolegal implications of mixed components in total hip arthroplasty. Acta Orthop. 2020, 91, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Rajpura, A.; Board, T.N. The evolution of the trunnion. Hip Int. 2015, 25, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Chana, R.; Esposito, C.; Campbell, P.; Walter, W.; Walter, W. Mixing and matching causing taper wear: Corrosion associated with pseudotumour formation. J. Bone Jt. Surg. 2012, 94, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Shareef, N.; Levine, D. Effect of manufacturing tolerances on the micromotion at the Morse taper interface in modular hip implants using the finite element technique. Biomaterials 1996, 17, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.; Sidaginamale, R.; Lord, J.; Nargol, A.; Joyce, T. Taper junction failure in large-diameter metal-on-metal bearings. Bone Jt. Res. 2012, 1, 56–63. [Google Scholar] [CrossRef]
- Cip, J.; von Strempel, A.; Bach, C.; Luegmair, M.; Benesch, T.; Martin, A. Implication of femoral stem on performance of articular surface replacement (ASR) XL total hip arthroplasty. J. Arthroplast. 2014, 29, 2127–2135. [Google Scholar] [CrossRef]
- Andrew, J.; Beard, D.; Nolan, J.; Murray, D. “Mix and match” of femoral and acetabular components in total hip replacements–no effect on initial clinical benefit of surgery. In Proceedings of the Orthopaedic Proceedings; The British Editorial Society of Bone & Joint Surgery: London, UK, 2008; p. 300. [Google Scholar]
- Whittaker, R.; Hothi, H.; Meswania, J.; Berber, R.; Blunn, G.; Skinner, J.; Hart, A. The effect of using components from different manufacturers on the rate of wear and corrosion of the head–stem taper junction of metal-on-metal hip arthroplasties. Bone Jt. J. 2016, 98, 917–924. [Google Scholar] [CrossRef]
- Panagiotidou, A.; Meswania, J.; Hua, J.; Muirhead-Allwood, S.; Hart, A.; Blunn, G. Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography. J. Orthop. Res. 2013, 31, 2032–2039. [Google Scholar] [CrossRef]
- Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.; Jacobs, J.; Fischer, A.; Marks, L. New insights into hard phases of CoCrMo metal-on-metal hip replacements. J. Mech. Behav. Biomed. Mater. 2012, 12, 39–49. [Google Scholar] [CrossRef]
- Hall, D.; Pourzal, R.; Della Valle, C.; Galante, J.; Jacobs, J.; Urban, R. Corrosion of modular junctions in femoral and acetabular components for hip arthroplasty and its local and systemic effects. In Modularity and Tapers in Total Joint Replacement Devices; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Lee, C.H.; Yoon, H.-J. Medical big data: Promise and challenges. Kidney Res. Clin. Pract. 2017, 36, 3. [Google Scholar] [CrossRef]
- Varnum, C.; Pedersen, A.B.; Rolfson, O.; Rogmark, C.; Furnes, O.; Hallan, G.; Mäkelä, K.; de Steiger, R.; Porter, M.; Overgaard, S. Impact of hip arthroplasty registers on orthopaedic practice and perspectives for the future. EFORT Open Rev. 2019, 4, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Blankstein, M.; Lentine, B.; Nelms, N.J. The use of cement in hip arthroplasty: A contemporary perspective. JAAOS-J. Am. Acad. Orthop. Surg. 2020, 28, e586–e594. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, W.; Bingham, R.; Lorimer, M.; Hatton, A.; de Steiger, R.N. Early rate of revision of total hip arthroplasty related to surgical approach: An analysis of 122,345 primary total hip arthroplasties. J. Bone Jt. Surg. 2020, 102, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Furnes, O.; Paxton, E.; Cafri, G.; Graves, S.; Bordini, B.; Comfort, T.; Rivas, M.C.; Banerjee, S.; Sedrakyan, A. Distributed analysis of hip implants using six national and regional registries: Comparing metal-on-metal with metal-on-highly cross-linked polyethylene bearings in cementless total hip arthroplasty in young patients. J. Bone Jt. Surg. 2014, 96, 25–33. [Google Scholar] [CrossRef]
- Paxton, E.; Cafri, G.; Havelin, L.; Stea, S.; Pallisó, F.; Graves, S.; Hoeffel, D.; Sedrakyan, A. Risk of revision following total hip arthroplasty: Metal-on-conventional polyethylene compared with metal-on-highly cross-linked polyethylene bearing surfaces: International results from six registries. J. Bone Jt. Surg. 2014, 96, 19–24. [Google Scholar] [CrossRef]
- Sedrakyan, A.; Graves, S.; Bordini, B.; Pons, M.; Havelin, L.; Mehle, S.; Paxton, E.; Barber, T.; Cafri, G. Comparative effectiveness of ceramic-on-ceramic implants in stemmed hip replacement: A multinational study of six national and regional registries. J. Bone Jt. Surg. 2014, 96, 34–41. [Google Scholar] [CrossRef]
- Stea, S.; Comfort, T.; Sedrakyan, A.; Havelin, L.; Marinelli, M.; Barber, T.; Paxton, E.; Banerjee, S.; Isaacs, A.J.; Graves, S. Multinational comprehensive evaluation of the fixation method used in hip replacement: Interaction with age in context. J. Bone Jt. Surg. 2014, 96, 42–51. [Google Scholar] [CrossRef]
- Sepucha, K.R.; Vo, H.; Chang, Y.; Dorrwachter, J.M.; Dwyer, M.; Freiberg, A.A.; Talmo, C.T.; Bedair, H. Shared decision-making is associated with better outcomes in patients with knee but not hip osteoarthritis: The DECIDE-OA randomized study. J. Bone Jt. Surg. 2022, 104, 62–69. [Google Scholar] [CrossRef]
- Beyaz, S. A brief history of artificial intelligence and robotic surgery in orthopedics & traumatology and future expectations. Jt. Dis. Relat. Surg. 2020, 31, 653. [Google Scholar]
- Eltit, F.; Wang, Q.; Wang, R. Mechanisms of adverse local tissue reactions to hip implants. Front. Bioeng. Biotechnol. 2019, 7, 176. [Google Scholar] [CrossRef]
- Rymaruk, S.; Razak, A.; McGivney, R. Metallosis, psoas abscess and infected hip prosthesis in a patient with bilateral metal on metal total hip replacement. J. Surg. Case Rep. 2012, 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Gratton, A.; Buford, B.; Goswami, T.; Kurten, D.G.; Suva, L. Failure modes of biomedical implants. J. Mech. Behav. Mater. 2002, 13, 297–314. [Google Scholar] [CrossRef]
- Howie, D.W.; McGee, M.A. Wear and osteolysis in relation to prostheses design and materials. In Medical Applications of Titanium and Its Alloys: The Material and Biological Issues; ASTM International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- Clarke, I.C.; Campbell, P.; Kossovsky, N. Debris-mediated osteolysis—A cascade phenomenon involving motion, wear, particulates, macrophage induction, and bone lysis. In Particulate Debris from Medical Implants: Mechanisms of Formation and Biological Consequences; ASTM International: West Conshohocken, PA, USA, 1992. [Google Scholar]
- Zhou, Y.; Shen, M.-X.; Cai, Z.-B.; Peng, J.-F.; Zhu, M.-H. Study on dual rotary fretting wear behavior of Ti6Al4V titanium alloy. Wear 2017, 376, 670–679. [Google Scholar] [CrossRef]
- Kao, Y.-Y.J.; Koch, C.N.; Wright, T.M.; Padgett, D.E. Flexural rigidity, taper angle, and contact length affect fretting of the femoral stem trunnion in total hip arthroplasty. J. Arthroplast. 2016, 31, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Oladokun, A.; Pettersson, M.; Bryant, M.; Engqvist, H.; Persson, C.; Hall, R.; Neville, A. Fretting of CoCrMo and Ti6Al4V alloys in modular prostheses. Tribol.-Mater. Surf. Interfaces 2015, 9, 165–173. [Google Scholar] [CrossRef]
- Falez, F.; Mavrogenis, A.; Scarlat, M.M. Outcome scores after hip surgery in young adults: An editorial approach. Int. Orthop. 2022, 46, 1675–1679. [Google Scholar] [CrossRef]
- DeMik, D.E.; Muffly, S.A.; Carender, C.N.; Glass, N.A.; Brown, T.S.; Bedard, N.A. What is the impact of body mass index cutoffs on total knee arthroplasty complications? J. Arthroplast. 2022, 37, 683–687.e1. [Google Scholar] [CrossRef]
- American Association of Orthopaedic Surgeons. Current Concerns with Metal-on-Metal Hip Arthroplasty; American Association of Orthopaedic Surgeons (AAOS): Rosemont, IL, USA, 2012. [Google Scholar]
- Høl, P.J.; Hallan, G.; Furnes, O.; Fenstad, A.M.; Indrekvam, K.; Kadar, T. Similarly low blood metal ion levels at 10-years follow-up of total hip arthroplasties with Oxinium, CoCrMo, and stainless steel femoral heads. Data from a randomized clinical trial. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 821–828. [Google Scholar] [CrossRef]
- Dover, C.; Kuiper, J.H.; Craig, P.; Shaylor, P. Ten years on: Increased metal ion levels in a cohort of patients who underwent uncemented metal-on-polyethylene total hip arthroplasty. Bone Jt. J. 2020, 102, 832–837. [Google Scholar] [CrossRef]
- Johan Karrholm, M.M.; Odin, D.; Avinblad, J.; Rogmark, C.; Rolfson, O. Annual Report 2017, Swedish Hip Arthroplasty Register. 2017. Available online: https://www.researchgate.net/publication/332607257_Swedish_Hip_Arthroplasty_Register_Annual_Report_2017 (accessed on 30 June 2022).
- Halvorsen, V.; Fenstad, A.M.; Engesæter, L.B.; Nordsletten, L.; Overgaard, S.; Pedersen, A.B.; Kärrholm, J.; Mohaddes, M.; Eskelinen, A.; Mäkelä, K.T. Outcome of 881 total hip arthroplasties in 747 patients 21 years or younger: Data from the Nordic Arthroplasty Register Association (NARA) 1995–2016. Acta Orthop. 2019, 90, 331–337. [Google Scholar] [CrossRef]
- Paxton, E.W.; Cafri, G.; Nemes, S.; Lorimer, M.; Kärrholm, J.; Malchau, H.; Graves, S.E.; Namba, R.S.; Rolfson, O. An international comparison of THA patients, implants, techniques, and survivorship in Sweden, Australia, and the United States. Acta Orthop. 2019, 90, 148–152. [Google Scholar] [CrossRef] [PubMed]
- De Steiger, R.; Lorimer, M.; Graves, S. Cross-linked polyethylene for total hip arthroplasty markedly reduces revision surgery at 16 years. J. Bone Jt. Surg. 2018, 100, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
Demographics | Mean |
---|---|
Age at revision (years) | 69.4 (±13.5) |
BMI (kg/m2) | 29.6 (±7.3) |
Gender (male:female) | 20:24 |
Time in vivo (years) | 8.9 (±3.7) |
Reason for revision | Number |
Aseptic loosening | 19 |
Polyethylene wear | 8 |
Periprosthetic fracture | 7 |
Instability | 2 |
Infection | 4 |
Implant malposition | 1 |
Others | 3 |
Demographics | Ceramic (Mean) | Cobalt–Chromium (Mean) | p Value |
---|---|---|---|
Age (year) | 57 | 66 | 0.001 |
Male:Female | 28:24 | 33:19 | 0.32 |
BMI (kg/m2) | 23.4 | 29.7 | 0.15 |
Implantation time (year) | 8.6 | 8.4 | 0.83 |
Risk Factor/Potential Predictor | |
---|---|
1 | Age |
2 | Gender |
3 | BMI |
4 | ASA score |
Region of Interest | ||||
---|---|---|---|---|
Damage Mode | Medial | Anterior | Lateral | Posterior |
Fretting (stem) | 1.1 ± 0.1 | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.1 ± 0.1 |
Corrosion (stem) | 4.0 ± 0.04 | 3.8 ± 0.1 | 3.9 ± 0.1 | 3.9 ± 0.1 |
Fretting-proximal (neck) | 1.8 ± 0.1 | 1.1 ± 0.04 | 1.5 ± 0.1 | 1.6 ± 0.1 |
Fretting-distal (neck) | 2.2 ± 0.1 | 1.4 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.1 |
Corrosion-proximal (neck) | 3.5 ± 0.1 | 1.8 ± 0.1 | 2.7 ± 0.1 | 3.0 ± 0.1 |
Corrosion-distal (neck) | 3.7 ± 0.1 | 3.2 ± 0.1 | 3.6 ± 0.1 | 3.5 ± 0.1 |
Risk Factor/Potential Predictor | |
---|---|
1 | Head size |
2 | Modularity |
3 | Fixation method (Cemented/Cementless/Hybrid) |
4 | Materials combination |
5 | Material composition and metallurgical state |
6 | Flexural rigidity of the neck |
7 | Surface finish |
8 | Taper geometry and tolerances |
9 | Presence of multiple metal–metal interfaces |
10 | Stem design |
11 | Bearing design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadirinejad, K.; Day, C.W.; Milimonfared, R.; Taylor, M.; Solomon, L.B.; Hashemi, R. Fretting Wear and Corrosion-Related Risk Factors in Total Hip Replacement: A Literature Review on Implant Retrieval Studies and National Joint Replacement Registry Reports. Prosthesis 2023, 5, 774-791. https://doi.org/10.3390/prosthesis5030055
Ghadirinejad K, Day CW, Milimonfared R, Taylor M, Solomon LB, Hashemi R. Fretting Wear and Corrosion-Related Risk Factors in Total Hip Replacement: A Literature Review on Implant Retrieval Studies and National Joint Replacement Registry Reports. Prosthesis. 2023; 5(3):774-791. https://doi.org/10.3390/prosthesis5030055
Chicago/Turabian StyleGhadirinejad, Khashayar, Christopher W. Day, Roohollah Milimonfared, Mark Taylor, Lucian B. Solomon, and Reza Hashemi. 2023. "Fretting Wear and Corrosion-Related Risk Factors in Total Hip Replacement: A Literature Review on Implant Retrieval Studies and National Joint Replacement Registry Reports" Prosthesis 5, no. 3: 774-791. https://doi.org/10.3390/prosthesis5030055
APA StyleGhadirinejad, K., Day, C. W., Milimonfared, R., Taylor, M., Solomon, L. B., & Hashemi, R. (2023). Fretting Wear and Corrosion-Related Risk Factors in Total Hip Replacement: A Literature Review on Implant Retrieval Studies and National Joint Replacement Registry Reports. Prosthesis, 5(3), 774-791. https://doi.org/10.3390/prosthesis5030055