Customized Wrist Immobilization Splints Produced via Additive Manufacturing—A Comprehensive Evaluation of the Viable Configurations
Abstract
:1. Introduction
2. Methodology
2.1. Reconstruction of Wrist Geometry
2.2. Design of the Wrist Immobilization Splint Model
2.3. Production of the Splint Prototype
2.4. Time and Cost Analysis
2.5. Technical Analysis
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, K.; Anderson, L.E.; Glanze, W.D. Mosby’s Medical, Nursing, & Allied Health Dictionary; Mosby: Maryland Heights, MO, USA, 1998; ISBN 0815148003. [Google Scholar]
- American Society of Hand Therapies. Splint Classification System; The American Society of Hand Therapists: Garner, NC, USA, 1992. [Google Scholar]
- Bailey, J.; Cannon, N.; Colditz, J.; Fess, E.; Gettle, K.; DeMott, L. Splint Classification System; The American Society of Hand Therapists: Garner, NC, USA, 1992. [Google Scholar]
- Coppard, B.M.; Lohman, H. Introduction to Splinting: A Clinical Reasoning and Problem-Solving Approach; Mosby: Maryland Heights, MO, USA, 2008; ISBN 0323033849. [Google Scholar]
- Boyd, A.S.; Benjamin, H.J.; Asplund, C. Principles of Casting and Splinting. Am. Fam. Physician 2009, 79, 16–22. [Google Scholar]
- Paterson, A.M.; Bibb, R.; Campbell, R.I.; Bingham, G. Comparing Additive Manufacturing Technologies for Customised Wrist Splints. Rapid Prototyp. J. 2015, 21, 230–243. [Google Scholar] [CrossRef]
- Althoff, A.D.; Reeves, R.A. Splinting; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Wang, Y.; Tan, Q.; Pu, F.; Boone, D.; Zhang, M. A Review of the Application of Additive Manufacturing in Prosthetic and Orthotic Clinics from a Biomechanical Perspective. Engineering 2020, 6, 1258–1266. [Google Scholar] [CrossRef]
- Halanski, M.; Noonan, K.J. Cast and Splint Immobilization: Complications. J. Am. Acad. Orthop. Surg. 2008, 16, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Neri, P.; Razionale, A.V.; Tamburrino, F.; Barone, S. Sensor Architectures and Technologies for Upper Limb 3d Surface Reconstruction: A Review. Sensors 2020, 20, 6584. [Google Scholar] [CrossRef] [PubMed]
- TUDelft 3D Handscanner. Available online: https://www.tudelft.nl/en/ide/research/research-labs/applied-labs/3d-handscanner (accessed on 9 August 2023).
- Carfagni, M.; Furferi, R.; Governi, L.; Servi, M.; Uccheddu, F.; Volpe, Y.; Mcgreevy, K. Fast and Low Cost Acquisition and Reconstruction System for Human Hand-Wrist-Arm Anatomy. Procedia Manuf. 2017, 11, 1600–1608. [Google Scholar] [CrossRef]
- Buonamici, F.; Furferi, R.; Governi, L.; Lazzeri, S.; McGreevy, K.S.; Servi, M.; Talanti, E.; Uccheddu, F.; Volpe, Y. A Practical Methodology for Computer-Aided Design of Custom 3D Printable Casts for Wrist Fractures. Vis. Comput. 2020, 36, 375–390. [Google Scholar] [CrossRef]
- Li, J.; Tanaka, H. Feasibility Study Applying a Parametric Model as the Design Generator for 3D–Printed Orthosis for Fracture Immobilization. 3D Print. Med. 2018, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Ko, K.H. Automated Recognition of 3D Pipelines from Point Clouds. Vis. Comput. 2021, 37, 1385–1400. [Google Scholar] [CrossRef]
- Divi, S.C.; Verhoosel, C.V.; Auricchio, F.; Reali, A.; Harald Van Brummelen, E. Topology-Preserving Scan-Based Immersed Isogeometric Analysis. Comput. Methods Appl. Mech. Eng. 2022, 392, 114648. [Google Scholar] [CrossRef]
- Passieux, J.-C.; Bouclier, R.; Weeger, O. Image-Based Isogeometric Twins of Lattices with Virtual Image Correlation for Varying Cross-Section Beams. Int. J. Numer. Methods Eng. 2023, 124, 2237–2260. [Google Scholar] [CrossRef]
- Sala, F.; Carminati, M.; D’Urso, G.; Giardini, C. A Feasibility Analysis of a 3D Customized Upper Limb Orthosis. Procedia CIRP 2022, 110, 207–212. [Google Scholar] [CrossRef]
- Baronio, G.; Harran, S.; Signoroni, A. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process. Appl. Bionics Biomech. 2016, 2016, 8347478. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, L.; Wang, D. A Rapid and Intelligent Designing Technique for Patient-Specific and 3D-Printed Orthopedic Cast. 3D Print. Med. 2016, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Lin, H.; Zhang, X.; Huang, W.; Shi, L.; Wang, D. Application of 3D–Printed and Patient-Specific Cast for the Treatment of Distal Radius Fractures: Initial Experience. 3D Print. Med. 2017, 3, 11. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Dehghanghadikolaei, A.; Fotovvati, B.; Vosooghnia, A.; Emamian, S.S.; Gisario, A. The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Appl. Sci. 2019, 9, 3865. [Google Scholar] [CrossRef]
- Ramos, N.; Mittermeier, C.; Kiendl, J. Experimental and Numerical Investigations on Heat Transfer in Fused Filament Fabrication 3D-Printed Specimens. Int. J. Adv. Manuf. Technol. 2022, 118, 1367–1381. [Google Scholar] [CrossRef]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Hakimi, A. Experimental Investigation on Mechanical Characterization of 3D Printed PLA Produced by Fused Deposition Modeling (FDM). Mater. Res. Express 2021, 8, 035304. [Google Scholar] [CrossRef]
- Zharylkassyn, B.; Perveen, A.; Talamona, D. Effect of Process Parameters and Materials on the Dimensional Accuracy of FDM Parts. Mater. Today Proc. 2021, 44, 1307–1311. [Google Scholar] [CrossRef]
- Visscher, D.O.; te Slaa, S.; Jaspers, M.E.; van de Hulsbeek, M.; Borst, J.; Wolff, J.; Forouzanfar, T.; van Zuijlen, P.P. 3D Printing of Patient-Specific Neck Splints for the Treatment of Post-Burn Neck Contractures. Burn. Trauma 2018, 6, 15. [Google Scholar] [CrossRef]
- Sabyrov, N.; Sotsial, Z.; Abilgaziyev, A.; Adair, D.; Ali, M.H. Design of a Flexible Neck Orthosis on Fused Deposition Modeling Printer for Rehabilitation on Regular Usage. Procedia Comput. Sci. 2021, 179, 63–71. [Google Scholar] [CrossRef]
- Dombroski, C.E.; Balsdon, M.E.R.; Froats, A. The Use of a Low cost 3D Scanning and Printing Tool in the Manufacture of Custom-Made Foot Orthoses: A Preliminary Study. BMC Res. Notes 2014, 7, 443. [Google Scholar] [CrossRef] [PubMed]
- Walbran, M.; Turner, K.; Mcdaid, A.J. Customized 3D Printed Ankle-Foot Orthosis with Adaptable Carbon Fibre Composite Spring Joint under a Creative Commons Attribution (CC-BY) 4.0 License Customized 3D Printed Ankle-Foot Orthosis with Adaptable Carbon Fibre Composite Spring Joint. Cogent Eng. 2016, 3, 1227022. [Google Scholar] [CrossRef]
- Jin, H.; Xu, R.; Wang, S.; Wang, J. Use of 3D-Printed Heel Support Insoles Based on Arch Lift Improves Foot Pressure Distribution in Healthy People. Med. Sci. Monit. 2019, 25, 7175. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Ma, T.; Ren, Z.; Jin, H. Effect of 3D Printing Individualized Ankle-Foot Orthosis on Plantar Biomechanics and Pain in Patients with Plantar Fasciitis: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 1392–1400. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, S.J.; Cha, Y.H.; Lee, K.H.; Kwon, J.Y. Effect of Personalized Wrist Orthosis for Wrist Pain with Three-Dimensional Scanning and Printing Technique: A Preliminary, Randomized, Controlled, Open-Label Study. Prosthet. Orthot. Int. 2018, 42, 636–643. [Google Scholar] [CrossRef]
- Portnova, A.A.; Mukherjee, G.; Peters, K.M.; Yamane, A.; Steele, K.M. Design of a 3D-Printed, Open-Source Wrist-Driven Orthosis for Individuals with Spinal Cord Injury. PLoS ONE 2018, 13, e0193106. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, D.K.; Cha, Y.H.; Kwon, J.Y.; Kim, D.H.; Kim, S.J. Personalized Assistive Device Manufactured by 3D Modelling and Printing Techniques. Disabil. Rehabil. Assist. Technol. 2019, 14, 526–531. [Google Scholar] [CrossRef]
- Hexagon AB. Hexagon—Empowering an Autonomous, Sustainable Future. Available online: https://hexagon.com (accessed on 9 August 2023).
- ISO 10993-1:2018; Biological Evaluation of Medical Devices. ISO (International Organization for Standardization): Geneva, Switzerland, 2018.
- Cber, C. Use of International Standard ISO 10993-1, “Biological Evaluation of Medical Devices-Part 1: Evaluation and Testing within a Risk Management Process” Guidance for Industry and Food and Drug Administration Staff Preface Public Comment; Center for Devices and Radiological Health: Silver Spring, MD, USA, 2020. [Google Scholar]
- Ultimaker Ultimaker ABS—Technical Data Sheet. Available online: https://ultimaker.my.salesforce.com/sfc/p/#j0000000HOnW/a/5b000004UX1e/ymaTcu23yezPH0a2.9qJEJYtA_pvXVnTcQMeWNRiIaY (accessed on 9 August 2023).
- Ultimaker Ultimaker Nylon—Technical Data Sheet. Available online: https://ultimaker.my.salesforce.com/sfc/p/#j0000000HOnW/a/5b000004UiEo/LIYV6VDfKlwDuaqc.9FhLVGIN0sN96YivUwV0fu7ylA (accessed on 9 August 2023).
- Ultimaker Ultimaker PLA—Technical Data Sheet. Available online: https://ultimaker.my.salesforce.com/sfc/p/#j0000000HOnW/a/5b000004Uiac/95CBv380plulni.oGx.QVyYZTOIJAc6d_BypJjAmeok (accessed on 9 August 2023).
- Ultimaker Ultimaker PC—Technical Data Sheet. Available online: https://ultimaker.my.salesforce.com/sfc/p/#j0000000HOnW/a/5b000004TlDg/NmLGE1iImMnHn_5T0YLumlngSpw3CsXc3.ge1aCf_mE (accessed on 9 August 2023).
- Polymaker PolyMide PA6-GF—Technical Data Sheet. Available online: https://c-3d.niceshops.com/upload/file/PolyMide_PA6_GF_TDS_V5.1.pdf (accessed on 9 August 2023).
- Polymaker PolyMide PA6-CF—Technical Data Sheet. Available online: https://c-3d.niceshops.com/upload/file/PolyMide_PA6_CF_TDS_V5.1.pdf (accessed on 9 August 2023).
- Ultimaker Ultimaker Breakaway—Technical Data Sheet. Available online: https://ultimaker.my.salesforce.com/sfc/p/#j0000000HOnW/a/5b000004Udwf/FxKwB7aukJUO6tPWfTUYr089QQMY3u1bPhreKFrXDs4 (accessed on 9 August 2023).
- Ultimaker Recommended Printing Settings and Configurations for Ultimaker ABS. Available online: https://support.makerbot.com/s/article/1667337602935 (accessed on 9 August 2023).
- Ultimaker Recommended Printing Settings and Configurations for Ultimaker Nylon. Available online: https://support.makerbot.com/s/article/1667337602768 (accessed on 9 August 2023).
- Ultimaker Reccomended Printing Settings and Configurations for Ultimaker PLA. Available online: https://support.makerbot.com/s/article/1667337611872 (accessed on 9 August 2023).
- Ultimaker Recommended Printing Settings and Configurations for Ultimaker PC. Available online: https://support.makerbot.com/s/article/1667337602519 (accessed on 9 August 2023).
- Brett, A.M. Fatigue Failures. In ASM International Handbook Failure Analysis and Prevention.; Becker, W.T., Shipley, R.J., Eds.; ASM International: Russell Township, OH, USA, 2002; Volume 11. [Google Scholar]
- Reis, P.; Volpini, M.; Pimenta Maia, J.; Batista Guimarães, I.; Evelise, C.; Monteiro, M.; Carlos Campos Rubio, J. Resting Hand Splint Model from Topology Optimization to Be Produced by Additive Manufacturing. Rapid Prototyp. J. 2022, 28, 216–225. [Google Scholar] [CrossRef]
RS6 Laser Scanner | |
---|---|
Scanning technology | blue laser |
Scanning accuracy | 0.026 mm |
Point acquisition rate | max. 1.2 million points/s |
Points per line | max. 4000 |
Line rate | max. 300 Hz |
Line width | 150 mm |
ABS | Nylon | PLA | PC | PA6-GF25 | PA6-CF20 | |
---|---|---|---|---|---|---|
Nozzle diameter | 0.8 mm | 0.8 mm | 0.8 mm | 0.8 mm | 0.6 mm | 0.6 mm |
Layer height | 0.6 mm | 0.6 mm | 0.6 mm | 0.6 mm | 0.45 mm | 0.45 mm |
Infill density | 100% | 100% | 100% | 100% | 100% | 100% |
Infill pattern | Line | Line | Line | Line | Line | Line |
Nozzle temperature | 250 °C | 245 °C | 210 °C | 265 °C | 300 °C | 300 °C |
Build plate temperature | 85 °C | 70 °C | 60 °C | 110 °C | 50 °C | 50 °C |
Print speed | 50 mm/s | 35 mm/s | 45 mm/s | 70 mm/s | 60 mm/s | 60 mm/s |
ABS | Nylon | PLA | PC | PA6-GF25 | PA6-CF20 | |
---|---|---|---|---|---|---|
Mass density | 1.10 g/cm3 | 1.14 g/cm3 | 1.24 g/cm3 | 1.20 g/cm3 | 1.20 g/cm3 | 1.17 g/cm3 |
Young’s modulus (E) | 1 682 MPa | 579 MPa | 2 347 MPa | 1 904 MPa | 4 431 MPa | 7 453 MPa |
Poisson ratio (ν) | 0.35 | 0.39 | 0.33 | 0.36 | 0.40 | 0.38 |
Ultimate tensile strength (UTS) after 3D printing | 33.9 MPa | 34.3 MPa | 45.6 MPa | 53.7 MPa | 84.0 MPa | 105.0 MPa |
ABS | Nylon | PLA | PC | PA6-GF25 | PA6-CF20 | |
---|---|---|---|---|---|---|
Material consumption, 2 mm | 10.95 m | 10.91 m | 10.97 m | 11.08 m | 10.98 m | 10.83 m |
Material consumption, 3 mm | 16.51 m | 16.48 m | 16.55 m | 16.65 m | 16.81 m | 16.67 m |
Material consumption, 4 mm | 22.61 m | 22.58 m | 22.66 m | 22.75 m | 22.95 m | 22.81 m |
Material price | 0.58 €/m | 0.92 €/m | 0.57 €/m | 0.90 €/m | 1.38 €/m | 1.64 €/m |
For ABS | For Nylon | For PLA | For PC | For PA6-GF25 | For PA6-CF20 | |
---|---|---|---|---|---|---|
Support consumption, 2 mm | 0.21 m | 0.28 m | 0.23 m | 0.20 m | 2.39 m | 2.39 m |
Support consumption, 3 mm | 0.20 m | 0.21 m | 0.19 m | 0.20 m | 0.90 m | 0.90 m |
Support consumption, 4 mm | 0.20 m | 0.20 m | 0.22 m | 0.16 m | 0.97 m | 0.96 m |
Support price | 0.92 €/m | 0.92 €/m | 0.92 €/m | 0.92 €/m | 0.92 €/m | 0.92 €/m |
2 mm | 3 mm | 4 mm | |
---|---|---|---|
ABS | 3.9–7.8 mm | 2.6–4.4 mm | 1.8–2.9 mm |
Nylon | 11.3–22.6 mm | 7.6–12.6 mm | 5.1–8.5 mm |
PLA | 2.8–5.6 mm | 1.9–3.1 mm | 1.3–2.1 mm |
PC | 3.1–6.1 mm | 2.3–3.8 mm | 1.6–2.6 mm |
PA6-GF25 | 1.5–2.9 mm | 1.0–1.6 mm | 0.7–1.1 mm |
PA6-CF20 | 0.9–1.8 mm | 0.6–1.0 mm | 0.4–0.7 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sala, F.; D’Urso, G.; Giardini, C. Customized Wrist Immobilization Splints Produced via Additive Manufacturing—A Comprehensive Evaluation of the Viable Configurations. Prosthesis 2023, 5, 792-808. https://doi.org/10.3390/prosthesis5030056
Sala F, D’Urso G, Giardini C. Customized Wrist Immobilization Splints Produced via Additive Manufacturing—A Comprehensive Evaluation of the Viable Configurations. Prosthesis. 2023; 5(3):792-808. https://doi.org/10.3390/prosthesis5030056
Chicago/Turabian StyleSala, Francesca, Gianluca D’Urso, and Claudio Giardini. 2023. "Customized Wrist Immobilization Splints Produced via Additive Manufacturing—A Comprehensive Evaluation of the Viable Configurations" Prosthesis 5, no. 3: 792-808. https://doi.org/10.3390/prosthesis5030056
APA StyleSala, F., D’Urso, G., & Giardini, C. (2023). Customized Wrist Immobilization Splints Produced via Additive Manufacturing—A Comprehensive Evaluation of the Viable Configurations. Prosthesis, 5(3), 792-808. https://doi.org/10.3390/prosthesis5030056