CAD/CAM Abutments versus Stock Abutments: An Update Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Questions
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Research
3. Results
Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tischler, M. The Future of Implant Dentistry. Dent. Today 2016, 35, 84–85. [Google Scholar] [PubMed]
- Ogawa, T.; Sitalaksmi, R.M.; Miyashita, M.; Maekawa, K.; Ryu, M.; Kimura-Ono, A.; Suganuma, T.; Kikutani, T.; Fujisawa, M.; Tamaki, K.; et al. Effectiveness of the socket shield technique in dental implant: A systematic review. J. Prosthodont. Res. 2022, 66, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Sisler, Z. More Than Just a Temporary Solution, Precise Provisionals Are the Key to Final Restorations. Compend. Contin. Educ. Dent. 2021, 42, 70–75. [Google Scholar] [PubMed]
- Enkling, N.; Marder, M.; Bayer, S.; Götz, W.; Stoilov, M.; Kraus, D. Soft tissue response to different abutment materials: A controlled and randomized human study using an experimental model. Clin. Oral Implants Res. 2022, 33, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Rameh, S.; Menhall, A.; Younes, R. Key factors influencing short implant success. Oral Maxillofac. Surg. 2020, 24, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Shokouhi, B.; Cerajewska, T. Radiotherapy and the survival of dental implants: A systematic review. Br. J. Oral Maxillofac. Surg. 2022, 60, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2014, 2, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Romanos, G.E.; Weitz, D. Therapy of peri-implant diseases. Where is the evidence? J. Evid. Based Dent. Pract. 2012, 12, 204–208. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Manoil, D. Microbial Community-Driven Etiopathogenesis of Peri-Implantitis. J. Dent. Res. 2021, 100, 21–28. [Google Scholar] [CrossRef]
- Mombelli, A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontology 2000 2018, 76, 85–96. [Google Scholar] [CrossRef]
- Feres, M. Antibiotics in the treatment of periodontal diseases: Microbiological basis and clinical applications. Ann. R. Australas. Coll. Dent. Surg. 2008, 19, 37–44. [Google Scholar] [PubMed]
- Tonon, C.C.; Panariello, B.H.D.; Spolidorio, D.M.P.; Gossweiler, A.G.; Duarte, S. Antibiofilm effect of ozonized physiological saline solution on peri-implant-related biofilm. J. Periodontol. 2021, 92, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Poli, P.P.; Cicciu, M.; Beretta, M.; Maiorana, C. Peri-Implant Mucositis and Peri-Implantitis: A Current Understanding of Their Diagnosis, Clinical Implications, and a Report of Treatment Using a Combined Therapy Approach. J. Oral Implantol. 2017, 43, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Poli, P.P.; Souza, F.Á.; Manfredini, M.; Maiorana, C.; Beretta, M. Regenerative treatment of peri-implantitis following implant surface decontamination with titanium brush and antimicrobial photodynamic therapy: A case series with reentry. J. Oral Implantol. 2020, 46, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Invernici, M.M.; Salvador, S.L.; Silva, P.; Soares, M.; Casarin, R.; Palioto, D.B.; Souza, S.; Taba, M., Jr.; Novaes, A.B., Jr.; Furlaneto, F.; et al. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. J. Clin. Periodontol. 2018, 45, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.M.; Cuevas-Suárez, C.E.; Flores-Rodríguez, M.; Omaña-Covarrubias, A.; Nicastro, M.; Lazarescu, F.; Zarow, M.; Monteiro, P.; Jakubowicz, N.; et al. The Use of Probiotics as Adjuvant Therapy of Periodontal Treatment: A Systematic Review and Meta-Analysis of Clinical Trials. Pharmaceutics 2022, 14, 1017. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Cuggia, G.; Scribante, A. Domiciliary Use of Chlorhexidine vs Postbiotic Gels in Patients with Peri-Implant Mucositis: A Split-Mouth Randomized Clinical Trial. Appl. Sci. 2022, 12, 2800. [Google Scholar] [CrossRef]
- Paniz, G.; Mazzocco, F. Surgical-prosthetic management of facial soft tissue defects on anterior single implant-supported restorations: A clinical report. Int. J. Esthet. Dent. 2015, 10, 270–284. [Google Scholar]
- Cabello, G.; Rioboo, M.; Fábrega, J.G. Immediate placement and restoration of implants in the aesthetic zone with a trimodal approach: Soft tissue alterations and its relation to gingival biotype. Clin. Oral Implants Res. 2013, 24, 1094–1100. [Google Scholar] [CrossRef]
- Strietzel, F.P.; Neumann, K.; Hertel, M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clin. Oral Implants Res. 2015, 26, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Esteves, G.M.; Esteves, J.; Resende, M.; Mendes, L.; Azevedo, A.S. Antimicrobial and Antibiofilm Coating of Dental Implants-Past and New Perspectives. Antibiotics 2022, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Dos Reis, A.C. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J. Esthet. Restor. Dent. 2022, 34, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S.; Shin, S.-Y. Influence of the implant abutment types and the dynamic loading on initial screw loosening. J. Adv. Prosthodont. 2013, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, R.; Leone, R.; Leuci, S.; Ausiello, P.; Zarone, F. CAD/CAM cobalt-chromium alloy single crowns in posterior regions: 4-year prospective clinical study. J. Osseointegr. 2017, 9, 282–288. [Google Scholar]
- Edelhoff, D.; Schweiger, J.; Prandtner, O.; Stimmelmayr, M.; Güth, J.-F. Metal-free implant-supported single-tooth restorations. Part I: Abutments and cemented crowns. Quintessence Int. 2019, 50, 176–184. [Google Scholar]
- Valsan, I.M.; Pauna, M.R.; Petre, A.E.; Oancea, L. Biologic and Esthetic Outcome of CAD/CAM Custom Ceramic Implant Abutment: A Clinical Report. Maedica 2021, 16, 145–148. [Google Scholar]
- Mostafavi, A.S.; Mojtahedi, H.; Javanmard, A. Hybrid Implant Abutments: A Literature Review. Eur. J. Gen. Dent. 2021, 10, 106–115. [Google Scholar] [CrossRef]
- Schepke, U.; Meijer, H.J.A.; Kerdijk, W.; Raghoebar, G.M.; Cune, M. Stock versus CAD/CAM Customized Zirconia Implant Abutments—Clinical and Patient-Based Outcomes in a Randomized Controlled Clinical Trial. Clin. Implants Dent. Relat. Res. 2017, 19, 74–84. [Google Scholar] [CrossRef]
- Schepke, U.; Gresnigt, M.M.M.; Browne, W.R.; Abdolahzadeh, S.; Nijkamp, J.; Cune, M.S. Phase transformation and fracture load of stock and CAD/CAM-customized zirconia abutments after 1 year of clinical function. Clin. Oral Implants Res. 2019, 30, 559–569. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Wu, Y.-L.; Chen, H.-S.; Tsai, M.-H.; Chang, C.-C.; Wu, A.Y.-J. Comparing the Fracture Resistance and Modes of Failure in Different Types of CAD/CAM Zirconia Abutments with Internal Hexagonal Implants: An In Vitro Study. Materials 2022, 15, 2656. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, P.; Johannson, D.; Fischer, C.; Stawarczyk, B.; Beuer, F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int. J. Oral Maxillofac. Implants 2015, 30, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.; Molinero-Mourelle, P.; Forrer, F.A.; Schnider, N.; Hicklin, S.P.; Schimmel, M.; Brägger, U. Clinical performance of implant crowns with customized zirconia abutments: A prospective cohort study with a 4.5- to 8.8-year follow-up. Clin. Oral Implants Res. 2021, 32, 853–862. [Google Scholar] [CrossRef]
- Alsahhaf, A.; Spies, B.C.; Vach, K.; Kohal, R.-J. Fracture resistance of zirconia-based implant abutments after artificial long-term aging. J. Mech. Behav. Biomed. Mater. 2017, 66, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Lops, D.; Parpaiola, A.; Paniz, G.; Sbricoli, L.; Magaz, V.R.; Venezze, A.C.; Bressan, E.; Stellini, E. Interproximal Papilla Stability Around CAD/CAM and Stock Abutments in Anterior Regions: A 2-Year Prospective Multicenter Cohort Study. Int. J. Periodontics Restor. Dent. 2017, 37, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Cantieri Mello, C.; Araujo Lemos, C.A.; Ramos Verri, F.; Piza Pelizzer, E. CAD/CAM vs Conventional Technique for Fabrication of Implant-Supported Frameworks: A Systematic Review and Meta-Analysis of in Vitro Studies. Int. J. Prosthodont. 2019, 32, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Lops, D.; Bressan, E.; Parpaiola, A.; Sbricoli, L.; Cecchinato, D.; Romeo, E. Soft tissues stability of cad-cam and stock abutments in anterior regions: 2-year prospective multicentric cohort study. Clin. Oral Implants Res. 2015, 26, 1436–1442. [Google Scholar] [CrossRef]
- Beretta, M.; Poli, P.P.; Pieriboni, S.; Tansella, S.; Manfredini, M.; Ciccù, M.; Maiorana, C. Peri-Implant Soft Tissue Conditioning by Means of Customized Healing Abutment: A Randomized Controlled Clinical Trial. Materials 2019, 12, 3041. [Google Scholar] [CrossRef]
- Haugen, H.J.; Chen, H. Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis. J. Funct. Biomater. 2022, 13, 46. [Google Scholar] [CrossRef]
- Coray, R.; Zeltner, M.; Õzcan, M. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. J. Mech. Behav. Biomed. Mater. 2016, 62, 333–346. [Google Scholar] [CrossRef]
- Paek, J.; Woo, Y.-H.; Kim, H.-S.; Pae, A.; Noh, K.; Lee, H.; Kwon, K.-R. Comparative Analysis of Screw Loosening with Prefabricated Abutments and Customized CAD/CAM Abutments. Implant Dent. 2016, 25, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Lops, D.; Meneghello, R.; Sbricoli, L.; Savio, G.; Bressan, E.; Stellini, E. Precision of the Connection Between Implant and Standard or Computer-Aided Design/Computer-Aided Manufacturing Abutments: A Novel Evaluation Method. Int. J. Oral Maxillofac. Implants 2018, 33, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Pérez, R.; Bartolomé, J.F.; Ferreiroa, A.; Salido, M.P.; Pradíes, G. Evaluation of the Mechanical Behavior and Marginal Accuracy of Stock and Laser-Sintered Implant Abutments. Int. J. Prosthodont. 2017, 30, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Apicella, D.; Veltri, M.; Chieffi, N.; Polimeni, A.; Giovannetti, A.; Ferrari, M. Implant adaptation of stock abutments versus CAD/CAM abutments: A radiographic and Scanning Electron Microscopy study. Ann. Stomatol. (Roma) 2010, 1, 9–13. [Google Scholar]
- Jarman, J.M.; Hamalian, T.; Randi, A.P. Comparing the Fracture Resistance of Alternatively Engineered Zirconia Abutments with Original Equipment Manufactured Abutments with Different Implant Connection Designs. Int. J. Oral Maxillofac. Implants 2017, 32, 992–1000. [Google Scholar] [CrossRef]
- Yilmaz, B.; Salaita, L.G.; Seidt, J.D.; McGlumphy, E.A.; Clelland, N.L. Load to failure of different zirconia abutments for an internal hexagon implant. J. Prosthet. Dent. 2015, 114, 373–377. [Google Scholar] [CrossRef]
- Wittneben, J.-G.; Gavric, J.; Sailer, I.; Buser, D.; Wismeijer, D. Clinical and esthetic outcomes of two different prosthetic workflows for implant-supported all-ceramic single crowns-3 year results of a randomized multicenter clinical trail. Clin. Oral Implants Res. 2020, 31, 495–505. [Google Scholar] [CrossRef]
- Karl, M.; Taylor, T.D. Parameters determining micromotion at the implant-abutment interface. Int. J. Oral Maxillofac. Implants 2014, 29, 1338–1347. [Google Scholar] [CrossRef]
- Stevens, F.W. Construction of an acrylic resin dowel crown to be used as an abutment for a fixed bridge. Dent. Surv. 1945, 21, 1779–1782. [Google Scholar]
- Harris, F.N. The precision dowel rest attachment. J. Prosthet. Dent. 1955, 5, 43–48. [Google Scholar] [CrossRef]
- Miyakawa, O. Mechanical studies on the dental bridges by the finite element method. (1)—An abutment tooth model. Shika Rikogaku Zasshi 1976, 17, 269–277. [Google Scholar] [PubMed]
- Hiroshi, A.; Yasuhiro, K.; Yuzo, M.; Hiroshi, K.; Junzo, T.; Masao, K.; Takashi, W. A Method for Machining Free Formed Surface by using a CAD/CAM System by a Personal Computer and an Optical Measurement of Object Shapes. (1st Report):-Optical Profile NC Machining-. J. JSPE 1989, 55, 1259–1264. [Google Scholar]
- Edelhoff, D.; Schweiger, J.; Prandtner, O.; Stimmelmayr, M.; Güth, J.-F. Metal-free implant-supported single-tooth restorations. Part II: Hybrid abutment crowns and material selection. Quintessence Int. 2019, 50, 260–269. [Google Scholar] [PubMed]
- Naveau, A.; Rignon-Bret, C.; Wulfman, C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J. Prosthet. Dent. 2019, 121, 775–781.e1. [Google Scholar] [CrossRef]
- Bates, J.F.; Stafford, G.D.; Harrison, A. Masticatory function—A review of the literature. III. Masticatory performance and efficiency. J. Oral Rehabil. 1976, 3, 57–67. [Google Scholar] [CrossRef]
- Ragupathi, M.; Mahadevan, V.; Azhagarasan, N.S.; Ramakrishnan, H.; Jayakrishnakumar, S. Comparative evaluation of the wear resistance of two different implant abutment materials after cyclic loading—An in vitro study. Contemp. Clin. Dent. 2020, 11, 229–236. [Google Scholar]
- Souza, J.C.M.; Apaza-Bedoya, K.; Benfatti, C.A.M.; Silva, F.S.; Henriques, B. A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. Metals 2020, 10, 1272. [Google Scholar] [CrossRef]
- Karl, M.; Irastorza-Landa, A. In Vitro Characterization of Original and Nonoriginal Implant Abutments. Int. J. Oral Maxillofac. Implants 2018, 33, 1229–1239. [Google Scholar] [CrossRef]
Adequate Sequence Generated | Allocation Concealment | Blinding | Incomplete Outcome Data | Registration Outcome Data | |
---|---|---|---|---|---|
Edelhoff Daniel et al. 2019 [26] | |||||
Valsan Monica Ioana et al. 2021 [27] | |||||
Mostafavi Azam Sadat et al. 2021 [28] | |||||
Schepke Ulf et al. 2017 [29] | |||||
Schepke Ulf et al. 2019 [30] | |||||
Chang Yu-Tsen et al. 2022 [31] | |||||
Gehrke Peter et al. 2015 [32] | |||||
Fonseca Manrique et al. 2021 [33] | |||||
Alsahhaf Abdulaziz et al. 2017 [34] | |||||
Lops Diego et al. 2017 [35] | |||||
Cantieri Mello Caroline et al. 2019 [36] | |||||
Lops Diego et al. 2015 [37] | |||||
Beretta Mario et al. 2019 [38] | |||||
Haugen Håvard et al. 2022 [39] | |||||
Coray Rafaela et al. 2016 [40] | |||||
Paek Janghyun et al. 2016 [41] | |||||
Lops Diego et al. 2018 [42] | |||||
Alonso-Pérez Raquel et al. 2017 [43] | |||||
Apicella Davide et al. 2010 [44] | |||||
Jarman Joseph et al. 2017 [45] | |||||
Yilmaz Burak et al. 2015 [46] | |||||
Wittneben Julia-Gabriela et al. 2020 [47] | |||||
Karl Matthias et al. 2014 [48] |
CAD/CAM Abutments Advantages | References and Study Details |
---|---|
CAD/CAM abutments containing titanium inserts had higher fracture resistance than solid zirconia abutment; this conditioned the type of fracture, mainly horizontal, and the location of the fracture, mainly buccal, distant from the implant platform. | Chang et al. 2022 [31]: in vitro investigation comparing three groups of zirconia abutments (n = 5) consisting of different connection designs or manufacturers (All-Zr, ASC-Zr, and AM-Zr groups) |
All prosthetic parameters are modifiable, including emergence file, thickness, outer contour, position of the finish line in relation to the roots of contiguous tooth elements and the gingival margin, predictable fit, and durability. | Cantieri Mello et al. 2019 [36]: systematic review and meta-analysis of 11 in vitro studies |
After 1 year of clinical service, no difference in fracture toughness was found for the CAD/CAM zirconia abutments compared with their pristine copies. | Schepke et al. 2019 [30]: ex vivo study on 23 stock and 23 CAD/CAM customized zirconia implant abutments |
Two-piece CAD/CAM zirconia abutments with an internal–hex connection demonstrated greater fracture resistance than one-piece CAD/CAM zirconia and stock zirconia abutments. | Gehrke et al. 2015 [32]: in vitro experiments on 21 abutment-crown specimens Mostafavi et al. 2021 [29]: randomized clinical trial with 50 participants |
Excellent finish, compensates poor implant angulation, and supports and interacts with soft tissue. | Valsan et al. 2021 [27]: clinical report |
CAD/CAM healing abutments require fewer steps for prosthetic finalization than standard healing abutments, allow for a higher functional implant prosthodontics score, and perceived pain is less in the early stages of prosthetic rehabilitation. | Beretta et al. 2019 [38]: randomized controlled clinical trial with 20 participants |
Screw-retained implant crowns based on CAD/CAM zirconia abutments with conical connection exhibited excellent clinical performance. | Fonseca et al. 2021 [33]: prospective cohort study, with a 4.5–8.8-year follow-up on 32 patients with 40 implant single crowns |
CAD/CAM abutment-supported restorations in titanium and zirconia have lower mean papillary recession index than stock abutments, improving papilla support and avoid excessive papilla compression. | Lops et al. 2017 [35] and Lops et al., 2015 [37]: 2-year prospective multicenter cohort studies |
Reduction of the risk of cement remaining deep in the peri-implant sulcus in the cemented prosthesis. | Edelhoff et al. 2019 [26]: review |
Abutment material does not determine any significant difference in the degree of papillary recession for either stock abutments or CAD/CAM abutments made of titanium and zirconia, given the biocompatibility of these materials. | Haugen et al. 2022 [39]: review and meta-analysis respectively including 100 and 30 studies |
Stock abutments advantages | |
One-piece CAD/CAM zirconia abutments have lower static fracture loads than their stock counterparts. | Alsahhaf et al. 2017 [34]: in vitro study on 80 abutments Jarman et al. 2017 [45]: in vitro study on zirconia abutments Yilmaz et al. 2015 [46]: in vitro study comparing load to failure for 5 zirconia abutments for an internally hexagon implant |
The volume of material involved in the implant-abutment connection is higher than CAD/CAM titanium abutments and the frictional fit achieved with the stock abutment is better than the CAD/CAM abutment connected to the same implant system. | Lops et al. 2018 [42]: in vitro study comparing 10 CAD/CAM titanium abutments with 10 stock titanium abutments Alonso-Pérez et al. 2017 [43]: in vitro study comparing 13 implants connected to original stock abutments and 13 implants connected to nonoriginal laser-sintered abutments |
Better internal fit with respect to CAD/CAM abutments | Lops et al. 2018 [42]: in vitro study comparing 10 CAD/CAM titanium abutments with 10 stock titanium abutments Apicella et al. 2010 [44]: radiographic and SEM analysis on 12 titanium abutments, 12 stock zirconia abutments, and 12 third party zirconia abutments |
Less risk of corrosion due to the possible use of different alloys in the milled parts; less time-consuming and expensive. | Ragupathi et al. 2020 [56]: in vitro study on 10 titanium abutments and 10 PEEK abutments Souza et al. 2020 [57]: review |
Industrial manufacturing process standardizes the quality of the product and ensuring the use of biocompatible materials in the abutment/soft tissue interface. | Mostafavi et al. 2021 [28]: literature review |
Common aspects | |
After application of 5000 cycles of cyclic loading, with a force between 10 N and 250 N, there is no significant difference in screw loosening with titanium stock abutment or titanium CAD/CAM abutment, highlighting that the connection of the CAD/CAM abutment to the fixture was as stable as that of the stock abutment. | Paek et al. 2016 [41]: in vitro study on stock and customized CAD/CAM abutments |
Micromotion at the implant-abutment interface does not present significant differences between zirconia CAD/CAM abutments and titanium stock abutments. | Karl and Taylor 2014 [48]: in vitro study on CAD/CAM zirconia and CAD/CAM titanium abutments |
Radiographic and scanning electron microscopy (SEM) investigations have shown that the fit achievable with CAD/CAM abutments is comparable to that of stock abutments. | Apicella et al. 2010 [44]: radiographic and SEM analysis on 12 titanium abutments, 12 stock zirconia abutments, and 12 third party zirconia abutments |
Two-piece CAD/CAM zirconia abutments are an equivalent alternative to titanium abutments in a single-implant restoration in the anterior region. | Wittneben et al. 2020 [47]: 3-year randomized clinical trial |
After dynamic loading, microgap values at the implant-abutment interface are equivalent, demonstrating that CAD/CAM zirconia abutments can withstand functional forces as well as stock titanium abutments. | Coray et al. 2016 [40]: systematic review and meta-analysis on 7 studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, S.; Pascadopoli, M.; Pellegrini, M.; Pulicari, F.; Manfredini, M.; Zampetti, P.; Spadari, F.; Maiorana, C.; Scribante, A. CAD/CAM Abutments versus Stock Abutments: An Update Review. Prosthesis 2022, 4, 468-479. https://doi.org/10.3390/prosthesis4030038
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. CAD/CAM Abutments versus Stock Abutments: An Update Review. Prosthesis. 2022; 4(3):468-479. https://doi.org/10.3390/prosthesis4030038
Chicago/Turabian StyleGallo, Simone, Maurizio Pascadopoli, Matteo Pellegrini, Federica Pulicari, Mattia Manfredini, Paolo Zampetti, Francesco Spadari, Carlo Maiorana, and Andrea Scribante. 2022. "CAD/CAM Abutments versus Stock Abutments: An Update Review" Prosthesis 4, no. 3: 468-479. https://doi.org/10.3390/prosthesis4030038
APA StyleGallo, S., Pascadopoli, M., Pellegrini, M., Pulicari, F., Manfredini, M., Zampetti, P., Spadari, F., Maiorana, C., & Scribante, A. (2022). CAD/CAM Abutments versus Stock Abutments: An Update Review. Prosthesis, 4(3), 468-479. https://doi.org/10.3390/prosthesis4030038