The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Bone-Derived Cells
2.2. Osteocyte-like Cell Culture
2.3. Gene Expression
2.4. In Vitro Mineralisation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of UHMWPE and Vitamin E Analogues on the Oxidative Stress Response
3.2. Effects of UHMWPE and Vitamin E on the Pro-Osteoclastogenic Response
3.3. Effects of UHMWPE and Vitamin E on the Osteocytic Osteolysis Response
3.4. Effects of Vitamin E Analogues on Mineral Handling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howie, D.W.; Neale, S.D.; Stamenkov, R.; McGee, M.A.; Taylor, D.J.; Findlay, D.M. Progression of acetabular periprosthetic osteolytic lesions measured with computed tomography. J. Bone Jt. Surg. 2007, 89, 1818–1825. [Google Scholar]
- Goodman, S.B.; Gallo, J. Periprosthetic osteolysis: Mechanisms, prevention and treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar]
- Goodman, S.; Aspenberg, P.; Song, Y.; Regula, D.; Lidgren, L. Polyethylene and titanium alloy particles reduce bone formation. Dose-dependence in bone harvest chamber experiments in rabbits. Acta Orthop. Scand. 1996, 67, 599–605. [Google Scholar]
- Ormsby, R.T.; Cantley, M.; Kogawa, M.; Solomon, L.B.; Haynes, D.R.; Findlay, D.M.; Atkins, G.J. Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis. Acta Biomater 2016, 33, 242–251. [Google Scholar]
- Costa, L.; Luda, M.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. Oxidation in orthopaedic uhmwpe sterilized by gamma-radiation and ethylene oxide. Biomaterials 1998, 19, 659–668. [Google Scholar]
- Oral, E.; Godleski Beckos, C.; Malhi, A.S.; Muratoglu, O.K. The effects of high dose irradiation on the cross-linking of vitamin e-blended ultrahigh molecular weight polyethylene. Biomaterials 2008, 29, 3557–3560. [Google Scholar]
- Oral, E.; Greenbaum, E.S.; Malhi, A.S.; Harris, W.H.; Muratoglu, O.K. Characterization of irradiated blends of alpha-tocopherol and uhmwpe. Biomaterials 2005, 26, 6657–6663. [Google Scholar]
- Parth, M.; Aust, N.; Lederer, K. Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants. J. Mater. Sci Mater. Med. 2002, 13, 917–921. [Google Scholar]
- Oral, E.; Wannomae, K.K.; Hawkins, N.; Harris, W.H.; Muratoglu, O.K. Alpha-tocopherol-doped irradiated uhmwpe for high fatigue resistance and low wear. Biomaterials 2004, 25, 5515–5522. [Google Scholar]
- Jarrett, B.T.; Cofske, J.; Rosenberg, A.E.; Oral, E.; Muratoglu, O.; Malchau, H. In vivo biological response to vitamin e and vitamin-e-doped polyethylene. J. Bone Jt. Surg. 2010, 92, 2672–2681. [Google Scholar]
- Currier, B.H.; Van Citters, D.W. A novel technique for assessing antioxidant concentration in retrieved uhmwpe. Clin. Orthop. Relat. Res. 2017, 475, 1356–1365. [Google Scholar]
- Chin, K.Y.; Ima-Nirwana, S. The effects of alpha-tocopherol on bone: A double-edged sword? Nutrients 2014, 6, 1424–1441. [Google Scholar]
- Chin, K.Y.; Ima-Nirwana, S. The biological effects of tocotrienol on bone: A review on evidence from rodent models. Drug Des. Dev. Ther. 2015, 9, 2049–2061. [Google Scholar]
- Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takitani, K.; Negishi-Koga, T.; Sunamura, S.; Kodama, T.; et al. Vitamin e decreases bone mass by stimulating osteoclast fusion. Nat. Med. 2012, 18, 589–594. [Google Scholar]
- Fatokun, A.A.; Stone, T.W.; Smith, R.A. Responses of differentiated mc3t3-e1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharmacol. 2008, 587, 35–41. [Google Scholar]
- Zhang, J.; Hu, X.; Zhang, J. Associations between serum vitamin e concentration and bone mineral density in the us elderly population. Osteoporos. Int. 2017, 28, 1245–1253. [Google Scholar]
- Wolf, R.L.; Cauley, J.A.; Pettinger, M.; Jackson, R.; Lacroix, A.; Leboff, M.S.; Lewis, C.E.; Nevitt, M.C.; Simon, J.A.; Stone, K.L.; et al. Lack of a relation between vitamin and mineral antioxidants and bone mineral density: Results from the women’s health initiative. Am. J. Clin. Nutr. 2005, 82, 581–588. [Google Scholar]
- Michaelsson, K.; Wolk, A.; Byberg, L.; Arnlov, J.; Melhus, H. Intake and serum concentrations of alpha-tocopherol in relation to fractures in elderly women and men: 2 cohort studies. Am. J. Clin. Nutr. 2014, 99, 107–114. [Google Scholar]
- Prideaux, M.; Findlay, D.M.; Atkins, G.J. Osteocytes: The master cells in bone remodelling. Curr. Opin. Pharmacol. 2016, 28, 24–30. [Google Scholar]
- O’Brien, C.A.; Nakashima, T.; Takayanagi, H. Osteocyte control of osteoclastogenesis. Bone 2013, 54, 258–263. [Google Scholar]
- Tsourdi, E.; Jähn, K.; Rauner, M.; Busse, B.; Bonewald, L.F. Physiological and pathological osteocytic osteolysis. J. Musculoskelet. Neuronal Interact. 2018, 18, 292–303. [Google Scholar]
- Tang, S.Y.; Herber, R.P.; Ho, S.P.; Alliston, T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Miner. Res. 2012, 27, 1936–1950. [Google Scholar]
- Ormsby, R.T.; Zelmer, A.R.; Yang, D.; Gunn, N.J.; Starczak, Y.; Kidd, S.P.; Nelson, R.; Solomon, L.B.; Atkins, G.J. Evidence for osteocyte-mediated bone-matrix degradation associated with periprosthetic joint infection (pji). Eur. Cells Mater. 2021, 41, 264–280. [Google Scholar]
- Qing, H.; Ardeshirpour, L.; Pajevic, P.D.; Dusevich, V.; Jahn, K.; Kato, S.; Wysolmerski, J.; Bonewald, L.F. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J. Bone Miner. Res. 2012, 27, 1018–1029. [Google Scholar]
- Kogawa, M.; Wijenayaka, A.R.; Ormsby, R.T.; Thomas, G.P.; Anderson, P.H.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J. Bone Miner. Res. 2013, 28, 2436–2448. [Google Scholar]
- Ormsby, R.T.; Solomon, L.B.; Yang, D.; Crotti, T.N.; Haynes, D.R.; Findlay, D.M.; Atkins, G.J. Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater. 2019, 87, 296–306. [Google Scholar]
- Atkins, G.J.; Welldon, K.J.; Holding, C.A.; Haynes, D.R.; Howie, D.W.; Findlay, D.M. The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials 2009, 30, 3672–3681. [Google Scholar]
- Massaccesi, L.; Ragone, V.; Papini, N.; Goi, G.; Corsi Romanelli, M.M.; Galliera, E. Effects of vitamin e-stabilized ultra high molecular weight polyethylene on oxidative stress response and osteoimmunological response in human osteoblast. Front. Endocrinol. 2019, 10, 203. [Google Scholar]
- Yang, D.; Wijenayaka, A.R.; Solomon, L.B.; Pederson, S.M.; Findlay, D.M.; Kidd, S.P.; Atkins, G.J. Novel insights into staphylococcus aureus deep bone infections: The involvement of osteocytes. MBio 2018, 9, e00415–e00418. [Google Scholar]
- Kumarasinghe, D.D.; Sullivan, T.; Kuliwaba, J.S.; Fazzalari, N.L.; Atkins, G.J. Evidence for the dysregulated expression of twist1, tgfbeta1 and smad3 in differentiating osteoblasts from primary hip osteoarthritis patients. Osteoarthr. Cartil. 2012, 20, 1357–1366. [Google Scholar]
- Fattman, C.L.; Schaefer, L.M.; Oury, T.D. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 2003, 35, 236–256. [Google Scholar]
- Gazzano, E.; Bracco, P.; Bistolfi, A.; Aldieri, E.; Ghigo, D.; Boffano, M.; Costa, L.; Brach Del Prever, E. Ultra high molecular weight polyethylene is cytotoxic and causes oxidative stress, even when modified. Int. J. Immunopathol. Pharmacol. 2011, 24, 61–67. [Google Scholar]
- Premnath, V.; Harris, W.H.; Jasty, M.; Merrill, E.W. Gamma sterilization of uhmwpe articular implants: An analysis of the oxidation problem. Ultra high molecular weight poly ethylene. Biomaterials 1996, 17, 1741–1753. [Google Scholar]
- Neuerburg, C.; Loer, T.; Mittlmeier, L.; Polan, C.; Farkas, Z.; Holdt, L.M.; Utzschneider, S.; Schwiesau, J.; Grupp, T.M.; Bocker, W.; et al. Impact of vitamin e-blended uhmwpe wear particles on the osseous microenvironment in polyethylene particle-induced osteolysis. Int. J. Mol. Med. 2016, 38, 1652–1660. [Google Scholar]
- Zhang, Y.; Yan, M.; Niu, W.; Mao, H.; Yang, P.; Xu, B.; Sun, Y. Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ros/nlrp3/caspase-1 signaling axis in amouse osteolysis model. Int. Immunopharmacol. 2022, 107, 108699. [Google Scholar]
- Abdul-Majeed, S.; Mohamed, N.; Soelaiman, I.N. Effects of tocotrienol and lovastatin combination on osteoblast and osteoclast activity in estrogen-deficient osteoporosis. Evid.-Based Complementary Altern. Med. 2012, 2012, 960742. [Google Scholar]
- Bichara, D.A.; Malchau, E.; Sillesen, N.H.; Cakmak, S.; Nielsen, G.P.; Muratoglu, O.K. Vitamin e-diffused highly cross-linked uhmwpe particles induce less osteolysis compared to highly cross-linked virgin uhmwpe particles in vivo. J. Arthroplast. 2014, 29, 232–237. [Google Scholar]
- Callaway, D.A.; Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab. 2015, 33, 359–370. [Google Scholar]
- Atkins, G.J.; Findlay, D.M. Osteocyte regulation of bone mineral: A little give and take. Osteoporos. Int. 2012, 23, 2067–2079. [Google Scholar]
Gene | Sequence (5′–3′) | Direction | Amplicon Size |
---|---|---|---|
HPRT1 | TGACCTTGATTTATTTTGCATACC CGAGCAAGACGTTCAGTCCT | Forward Reverse | 102 bp |
SOD1 | TGAAGAGAGGCATGTTGGAGAC TGGGCGATCCCAATTACACC | Forward Reverse | 231 bp |
SOD2 | GGCCTACGTGAACAACCTGA GCAACTCCCCTTTGGGTTCT | Forward Reverse | 185 bp |
CAT | CCTGTGAACTGTCCCTACCG AATGCCCGCACCTGAGTAAC | Forward Reverse | 218 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ormsby, R.T.; Hosaka, K.; Evdokiou, A.; Odysseos, A.; Findlay, D.M.; Solomon, L.B.; Atkins, G.J. The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles. Prosthesis 2022, 4, 480-489. https://doi.org/10.3390/prosthesis4030039
Ormsby RT, Hosaka K, Evdokiou A, Odysseos A, Findlay DM, Solomon LB, Atkins GJ. The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles. Prosthesis. 2022; 4(3):480-489. https://doi.org/10.3390/prosthesis4030039
Chicago/Turabian StyleOrmsby, Renee T., Kunihiro Hosaka, Andreas Evdokiou, Andreani Odysseos, David M. Findlay, Lucian B. Solomon, and Gerald J. Atkins. 2022. "The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles" Prosthesis 4, no. 3: 480-489. https://doi.org/10.3390/prosthesis4030039
APA StyleOrmsby, R. T., Hosaka, K., Evdokiou, A., Odysseos, A., Findlay, D. M., Solomon, L. B., & Atkins, G. J. (2022). The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles. Prosthesis, 4(3), 480-489. https://doi.org/10.3390/prosthesis4030039