Sequential Quantum Measurements and the Instrumental Group Algebra
Abstract
1. Introduction: The Instrument Manifold Program
2. A Commutative Analogy: The Real Line as an Instrument
3. Prelude: Sequences of Measurement in Time and Their Structure
3.1. There Is a Need to Move Past the Idea of Instantaneous Measurement
3.2. With Continuous Measurements, What Kinds of Instruments Are Possible?
3.3. There Is an Analytic Structure to Applying Instruments in Sequence
3.4. There Is a Need to Move Past the State-Centric Approach to Continuous Measurement
3.5. The Structure of Sequential Measurement Is the IG Convolution
3.6. The Home of the KOD Is the IG Algebra
4. Instrumental Groups: Moving from Continuous to Sequential Measurement
4.1. The Fundamental Problem of Continuous Measurement: Piling Kraus Operators (Convolution 1 of 3)
4.2. Simultaneous Measurements of Noncommuting Observables
4.3. Sequential Measurements: Kraus-Operator Distributions and the Convolution (2 of 3)
5. Kraus-Operator Densities: Ultraoperators and the IG Algebra
5.1. The Haar Measures: Kraus-Operator Densities and the Convolution (3 of 3)
5.2. Translation Ultraoperators and Their Invariant Derivatives
5.3. The IG Algebra and Two Involutions: Gelfand-Kolmogorov and Cartan-Schmidt
5.4. The Kolmogorov Equation for the KOD of a Continuous Measurement
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Quantum Measurement Theory: An Overview of Standard Knowledge
Appendix A.1. Kraus Operators, POVMs, and Instruments
Appendix A.2. Total Operations (A.k.a. Channels) and Decoherence
Appendix A.3. Continuous-in-Time Decoherence/Dissipation
Appendix B. System-Meter-Interaction Models
Appendix B.1. Jump Processes
Appendix B.2. Diffusive Processes
Appendix C. Invariant One-Forms, Haar Measures, and the Modular Function
Appendix D. The δ-Function of a Group
References
- Jackson, C.S.; Caves, C.M. How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. i. spin and the Kraus-operator geometry of SL(2,). Quantum 2023, 7, 1085. [Google Scholar] [CrossRef]
- Jackson, C.S.; Caves, C.M. Simultaneous momentum and position measurement and the instrumental weyl-heisenberg group. Entropy 2023, 25, 1221. [Google Scholar] [CrossRef]
- Jackson, C.S.; Caves, C.M. Simultaneous measurements of noncommuting observables: Positive transformations and instrumental lie groups. Entropy 2023, 25, 1254. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Lo Presti, P.; Sacchi, M.F. A quantum measurement of the spin direction. Phys. Lett. A 2002, 292, 233–237. [Google Scholar] [CrossRef]
- Massar, S.; Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 1995, 74, 1259. [Google Scholar] [CrossRef]
- Shojaee, E.; Jackson, C.S.; Riofrío, C.A.; Kalev, A.; Deutsch, I.H. Optimal pure-state qubit tomography via sequential weak measurements. Phys. Rev. Lett. 2018, 121, 130404. [Google Scholar] [CrossRef]
- Deutsch, I.H.; Jessen, P.S. Quantum control and measurement of atomic spins in polarization spectroscopy. Opt. Commun. 2010, 283, 681. [Google Scholar] [CrossRef]
- Leonhardt, U. Measuring the Quantum State of Light; Cambridge Studies in Modern Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Klauder, J.R. The action option and a feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 1960, 11, 123. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys.-Math. Soc. Jpn. 3rd Ser. 1940, 22, 264. [Google Scholar]
- Arthurs, E.; Kelly, J.L.J. On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Tech. J. Brief 1965, 44, 725. [Google Scholar] [CrossRef]
- She, C.Y.; Heffner, H. Simultaneous measurement of noncommuting observables. Phys. Rev. 1966, 152, 1103. [Google Scholar] [CrossRef]
- Personick, S.D. An image band interpretation of optical heterodyne noise. Bell Syst. Tech. J. Brief 1971, 50, 213. [Google Scholar] [CrossRef]
- Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332. [Google Scholar] [CrossRef]
- Wiseman, H.M. Quantum trajectories and quantum measurement theory. Quantum Semiclass. Opt. J. Eur. Opt. Soc. Part B 1996, 8, 205. [Google Scholar] [CrossRef]
- Goetsch, P.; Graham, R. Linear stochastic wave equations for continuously measured quantum systems. Phys. Rev. A 1994, 50, 5242. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, A.; Lanz, L.; Prosperi, G.M. A model for the macroscopic description and continual observations in quantum mechanics. Il Nuovo Cimento B 1982, 72, 79–121. [Google Scholar] [CrossRef]
- Barchielli, A. Continual measurements in quantum mechanics and quantum stochastic calculus. In Open Quantum Systems III: Recent Developments; Springer: Berlin/Heidelberg, Germany, 2006; pp. 207–292. [Google Scholar]
- Barchielli, A.; Gregoratti, M. Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Warszawski, P.; Wiseman, H.M.; Doherty, A.C. Solving quantum trajectories for systems with linear Heisenberg-picture dynamics and Gaussian measurement noise. Phys. Rev. A 2020, 102, 042210. [Google Scholar] [CrossRef]
- Kraus, K. States, Effects, and Operations: Fundamental Notions of Quantum Theory; Lecture Notes in Physics; Böhm, A., Dollard, J.D., Wootters, W.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 190. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1932. [Google Scholar]
- Busch, P.; Lahti, P. Compendium of Quantum Physics; Greenberger, D., Hentshel, K., Weinert, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 356–358. [Google Scholar]
- DeBrota, J.B.; Stacey, B.C. Luders channels and the existence of symmetric-informationally-complete measurements. Phys. Rev. A 2019, 100, 062327. [Google Scholar] [CrossRef]
- Shapiro, J.H.; Wagner, S.S. Phase and amplitude uncertainties in heterodyne detection. IEEE J. Quantum Electron. 1984, 20, 803. [Google Scholar] [CrossRef]
- Yuen, H.P.; Lax, M. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory 1973, 19, 740. [Google Scholar] [CrossRef]
- Gordon, J.P.; Louisell, W.H. Simultaneous measurements of noncommuting observables. Phys. Quantum Electron. 1966, 65, 833. [Google Scholar]
- Srinivas, M.; Davies, E. Photon counting probabilities in quantum optics. Opt. Acta Int. J. Opt. 1981, 28, 981. [Google Scholar] [CrossRef]
- Wiseman, H.M. Quantum Trajectories and Feedback. Ph.D. Thesis, University of Queensland, Brisbane, QLD, Australia, 1994. [Google Scholar]
- Silberfarb, A.; Jessen, P.S.; Deutsch, I.H. Quantum state reconstruction via continuous measurement. Phys. Rev. Lett. 2005, 95, 030402. [Google Scholar] [CrossRef]
- Jacobs, K.; Steck, D.A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 2006, 47, 279. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 18. [Google Scholar]
- Cook, R.L.; Riofrio, C.A.; Deutsch, I.H. Single-shot quantum state estimation via a continuous measurement in the strong backaction regime. Phys. Rev. A 2014, 90, 032113. [Google Scholar] [CrossRef]
- Gross, J.A.; Caves, C.M.; Milburn, G.J.; Combes, J. Qubit models of weak continuous measurements: Markovian conditional and open-system dynamics. Quantum Sci. Technol. 2018, 3, 024005. [Google Scholar] [CrossRef]
- Dixmier, J. C*-Algebras; Francis, J., Translator; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Rotman, J.J. An Introduction to the Theory of Groups; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 148. [Google Scholar]
- Epstein, D.B.A. Word Processing in Groups; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Gromov, M. Hyperbolic Groups; Gersten, S.M., Ed.; Essays in Group Theory; MSRI Publications: Berkeley, CA, USA, 1987; Volume 8, p. 75. [Google Scholar]
- Cannon, J. The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata 1984, 16, 123. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics or, Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning; A Bradford Book; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Bennett, B.M.; Hoffman, D.D.; Prakash, C. Observer Mechanics: A Formal Theory of Perception; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Dupont, P.; Denis, F.; Esposito, Y. Links between probabilistic automata and hidden markov models: Probability distributions, learning models and induction algorithms. Pattern Recognit. 2005, 38, 1349. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Karmakar, T.; Lewalle, P.; Jordan, A.N. Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator. PRX Quantum 2022, 3, 010327. [Google Scholar] [CrossRef]
- Wiseman, H.W. Su(2) distribution functions and measurement of the fluorescence of a two-level atom. Quantum Semiclassical Opt. 1995, 7, 569. [Google Scholar] [CrossRef]
- Neumann, J. Invariant Measures; Lectured at the IAS in 1940–1941; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Barut, A.O.; Raçszka, R. Theory of Group Representations and Applications; World Scientific: Singapore, 1986. [Google Scholar]
- Dieudonne, J. Special Functions and Linear Represenations of Lie Groups; Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1979; Volume 42. [Google Scholar]
- Nachbin, L. The Haar Integral; The University Series in Higher Mathematics; D. Van Nostrand Co., Inc.: New York, NY, USA, 1965. [Google Scholar]
- Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis, Volume I: Structure of Topological Groups, Integration Theory, Group Representations; Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen; Springer: Berlin/Heidelberg, Germany, 1963; Volume 115. [Google Scholar]
- Rudin, W. Fourier Analysis on Groups; Interscience Tracts in Pure and Applied Mathematics; Interscience Publishers: Hoboken, NJ, USA, 1962. [Google Scholar]
- Montgomery, D.; Zippin, L. Topological Transformation Groups; Interscience Publishers, Inc.: Hoboken, NJ, USA, 1955. [Google Scholar]
- Pontrjagin, L. Topological Groups; Lehmer, E., Translator; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1939. [Google Scholar]
- Berezin, F.A. Some remarks about the associated envelope of a lie algebra. Funct. Anal. Its Appl. 1967, 1, 91. [Google Scholar] [CrossRef]
- Kitaev, A. Notes on sl(2,r) representations. arXiv 2017, arXiv:1711.08169. [Google Scholar]
- Helgason, S. Geometric Analysis on Symmetric Spaces, 2nd ed.; Mathematical Survey and Monographs; American Mathematical Society: Providence, RI, USA, 2008; Volume 39. [Google Scholar]
- Harish-Chandra. Discrete series for semisimple lie groups. ii. explicit determination of the characters. Acta Math. 1966, 116, 1. [Google Scholar] [CrossRef]
- Knapp, A.W. Representation Theory of Semisimple Groups: An Overview Based on Examples; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1986; Volume 36. [Google Scholar]
- Helgason, S. Differential Geometry and Symmetric Spaces; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Feller, W. On the theory of stochastic processes, with particular reference to applications. In Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 13–18 August 1945; University of California Press: Oakland, CA, USA, 1949; pp. 403–432. [Google Scholar]
- Gardiner, C.W. Handbook of stochastic methods for physics, chemistry and the natural sciences. Appl. Opt. 1986, 25, 3145. [Google Scholar] [CrossRef]
- Gardiner, C.W. Stochastic Methods: A Handbook for the Natural and Social Sciences, e-book ed.; Springer: Berlin, Geramny, 2019. [Google Scholar]
- Gardiner, C. Elements of Stochastic Methods; AIP Publishing: Melville, NY, USA, 2021. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Holevo, A. Probabilistic and Statsitical Aspects of Quantum Theory, 2nd ed.; Scuola Normale Superiore: Pisa, Italy, 2011. [Google Scholar]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239. [Google Scholar] [CrossRef]
- Jauch, J.M.; Piron, C. Generalized localizability. Helv. Phys. Acta 1967, 40, 559. [Google Scholar]
- Berberian, S.K. Notes on Spectral Theory; D. Van Nostrand Co., Inc.: Princeton, NJ, USA, 1966. [Google Scholar]
- Szőkefalvi-Nagy, B. Appendix to Functional Analysis: Extensions of Linear Transformations in Hilbert Space Which Extend Beyond This Space; Frederick Ungar Publishing Co.: New York, NY, USA, 1960. [Google Scholar]
- Stinespring, W.F. Positive functions on c*-algebras. Proc. Am. Math. Soc. 1955, 6, 211. [Google Scholar]
- Neumark, M.A. On a representation of additive operator set functions. Comptes Rendus Dokl. Acad. Sci. URSS 1943, 41, 359. [Google Scholar]
- Luders, G. Uber die zustandsanderung durch den messprozess. Ann. Phys. 1952, 8, 322. [Google Scholar]
- Kirkpatrick, K.A. Translation of Lueders’ “Uber die Zustandsanderung durch den Messprozess”. Ann. Phys. 2006, 15, 663. [Google Scholar]
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- De la Madrid, R. The role of the rigged hilbert space in quantum mechanics. Eur. J. Phys. 2005, 26, 287. [Google Scholar] [CrossRef]
- Roberts, J.E. Rigged hilbert spaces in quantum mechanics. Commun. Math. Phys. 1966, 3, 98–119. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Vilenkin, N.Y. Generalized Functions, Vol. IV: Applications of Harmonic Analysis; Feinstein, A., Translator; American Mathematical Society: Providence, RI, USA, 1966. [Google Scholar]
- Kitaev, A.Y.; Shen, A.; Vyalyi, M.N.; Vyalyi, M.N. Classical and Quantum Computation; American Mathematical Society: Providence, RI, USA, 2002; Volume 47. [Google Scholar]
- Menicucci, N. Superoperator Representation of Higher Dimensional Bloch Space Transformations; Ph.D. Advanced Project; Princeton University: Princeton, NJ, USA, 2005. [Google Scholar]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119. [Google Scholar] [CrossRef]
- Albert, V.V. Lindbladians with Multiple Steady States: Theory and Applications. Ph.D. Thesis, Yale University, New Haven, CT, USA, 2017. [Google Scholar]
- Strandberg, I.; Eriksson, A.M.; Royer, B.; Kervinen, M.; Gasparinetti, S. Digital homodyne and heterodyne detection for stationary bosonic modes. Phys. Rev. Lett. 2024, 133, 063601. [Google Scholar] [CrossRef]
| Comparison of the KOD FPKE and the Lindblad Master Equation | |
|---|---|
| (Section 5) KODs are in the IGA | Density operators are in the dual of the von Neumann algebra |
| ※(Section 5.4) Fokker–Planck–Kolmogorov equation | Lindblad master equation |
| | | |
| ※(Section 5.4) Generator for a diffusive process | |
| | | Dissipator/Lindbladian |
| (Section 5.4) Generator for a jump process | |
| | | |
| (Section 5.4) Kolmogorov-Lindblad intertwining relationship | |
| | | |
| (Section 4.3) Instrument element irreps of the IG | |
| Summary of the Various Group Properties | ||
|---|---|---|
| From KODs to Ultraoperators | From States to Superoperators | |
| | | Markovian Evolutions | |
| Exponential Solutions | ||
| | | Evolution Operators | |
| | | Single-Parameter Group Property | |
| | | IG Unravelings | |
| Invariant Chapman–Kolmogorov Equation | ||
| | | ||
| Instrumental Group Algebra | ||
| | | Expanded Representations | |
| | | Expanded Group Property | |
| Involutive Structures of the IGA and Its Ultraoperator and Superoperator Representations | |||
|---|---|---|---|
| IG convolution (Section 5.1) | |||
| (Section 5.3) IG-inner product: | :Hilbert–Schmidt inner product | ||
| (Section 5.3) Kolmogorov adjoint: | :Hilbert–Schmidt adjoint | ||
| (Section 5.3) Gelfand involution: | :Cartan involution (Section 5.3) ※ | ||
| (if IG is unimodular) | (if IG is unimodular) | ||
| (Section 5.2) left-translation ultraoperator: | :CP superoperator (Section 4.3) ※ | ||
| left-regular representation of IG | instrument-element irrep of IG | ||
| ☥-representation of IG | ‡-representation of IG | ||
| (Section 5.2) left-convolution ultraoperator: | :IGA superoperator (Section 5.3) ※ | ||
| IGA regular representation | IGA irrep | ||
| ☥-representation of IGA | ‡-representation of IGA | ||
| Intertwining Relations | Integrated | Differential ※ |
|---|---|---|
| selective | ||
| total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, C.S. Sequential Quantum Measurements and the Instrumental Group Algebra. Quantum Rep. 2025, 7, 57. https://doi.org/10.3390/quantum7040057
Jackson CS. Sequential Quantum Measurements and the Instrumental Group Algebra. Quantum Reports. 2025; 7(4):57. https://doi.org/10.3390/quantum7040057
Chicago/Turabian StyleJackson, Christopher S. 2025. "Sequential Quantum Measurements and the Instrumental Group Algebra" Quantum Reports 7, no. 4: 57. https://doi.org/10.3390/quantum7040057
APA StyleJackson, C. S. (2025). Sequential Quantum Measurements and the Instrumental Group Algebra. Quantum Reports, 7(4), 57. https://doi.org/10.3390/quantum7040057

