# ATP-Dependent Mismatch Recognition in DNA Replication Mismatch Repair

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Passive Recognition versus Active Recognition

## 3. Active Recognition Framework

## 4. Quantum Mechanics

## 5. Reshuffle Energy Levels

- Recognition result is completely random, i.e., ${\xi}^{\mathrm{AT}}=1$ and ${\xi}^{\mathrm{GT}}=1$.
- Recognition always results in conformation $R/{R}^{\prime}$, i.e., ${\xi}^{\mathrm{AT}}=0$ and ${\xi}^{\mathrm{GT}}=\infty $, or $\frac{1}{0}$.
- Recognition always results in conformation $W/{W}^{\prime}$, i.e., ${\xi}^{\mathrm{AT}}=\infty $ and ${\xi}^{\mathrm{GT}}=0$.

## 6. Fidelity Improvement

- The recognition ability of Enz is ${\xi}^{\mathrm{AT}}{\xi}^{\mathrm{GT}}={10}^{-10}$.
- The G–T error rate before MMR is $\eta ={10}^{-8}$.
- Each repair process excises ${10}^{3}$ bases.
- The error rate of resynthesis is ${10}^{-7}$.

## 7. Discussion

## 8. Artificial Enz

## 9. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- McCulloch, S.D.; Kunkel, T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res.
**2008**, 18, 148–161. [Google Scholar] [CrossRef] [PubMed] - Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem.
**2005**, 74, 681–710. [Google Scholar] [CrossRef] [PubMed] - Modrich, P. Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture). Angew. Chem. Int. Ed.
**2016**, 55, 8490–8501. [Google Scholar] [CrossRef] [PubMed] - Schofield, M.J.; Hsieh, P. DNA mismatch repair: Molecular mechanisms and biological function. Annu. Rev. Microbiol.
**2003**, 57, 579–608. [Google Scholar] [CrossRef] - Fijalkowska, I.J.; Schaaper, R.M.; Jonczyk, P. DNA replication fidelity in Escherichia coli: A multi-DNA polymerase affair. FEMS Microbiol. Rev.
**2012**, 36, 1105–1121. [Google Scholar] [CrossRef] - Lee, H.; Popodi, E.; Tang, H.; Foster, P.L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl. Acad. Sci. USA
**2012**, 109, E2774–E2783. [Google Scholar] [CrossRef] - Eisen, J.A. A phylogenomic study of the MutS family of proteins. Nucleic Acids Res.
**1998**, 26, 4291–4300. [Google Scholar] [CrossRef] - Lin, Z.; Nei, M.; Ma, H. The origins and early evolution of DNA mismatch repair genes—Multiple horizontal gene transfers and co-evolution. Nucleic Acids Res.
**2007**, 35, 7591–7603. [Google Scholar] [CrossRef] - Borsellini, A.; Kunetsky, V.; Friedhoff, P.; Lamers, M.H. Cryogenic electron microscopy structures reveal how ATP and DNA binding in MutS coordinates sequential steps of DNA mismatch repair. Nat. Struct. Mol. Biol.
**2022**, 29, 59–66. [Google Scholar] [CrossRef] - Groothuizen, F.S.; Winkler, I.; Cristóvão, M.; Fish, A.; Winterwerp, H.H.K.; Reumer, A.; Marx, A.D.; Hermans, N.; Nicholls, R.A.; Murshudov, G.N.; et al. MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. Elife
**2015**, 4, e06744. [Google Scholar] [CrossRef] - Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol.
**2006**, 7, 335–346. [Google Scholar] [CrossRef] - Fishel, R. Mismatch Repair. J. Biol. Chem.
**2015**, 290, 26395–26403. [Google Scholar] [CrossRef] [PubMed] - Liu, J.; Hanne, J.; Britton, B.M.; Bennett, J.; Kim, D.; Lee, J.B.; Fishel, R. Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair. Nature
**2016**, 539, 583–587. [Google Scholar] [CrossRef] [PubMed] - Hao, P.; LeBlanc, S.J.; Case, B.C.; Elston, T.C.; Hingorani, M.M.; Erie, D.A.; Weninger, K.R. Recurrent mismatch binding by MutS mobile clamps on DNA localizes repair complexes nearby. Proc. Natl. Acad. Sci. USA
**2020**, 117, 17775–17784. [Google Scholar] [CrossRef] [PubMed] - Ishino, S.; Nishi, Y.; Oda, S.; Uemori, T.; Sagara, T.; Takatsu, N.; Yamagami, T.; Shirai, T.; Ishino, Y. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res.
**2016**, 44, 2977–2986. [Google Scholar] [CrossRef] - Nakae, S.; Hijikata, A.; Tsuji, T.; Yonezawa, K.; Kouyama, K.I.; Mayanagi, K.; Ishino, S.; Ishino, Y.; Shirai, T. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease. Structure
**2016**, 24, 1960–1971. [Google Scholar] [CrossRef] - White, M.F.; Allers, T. DNA repair in the archaea—An emerging picture. FEMS Microbiol. Rev.
**2018**, 42, 514–526. [Google Scholar] [CrossRef] - Marshall, C.J.; Santangelo, T.J. Archaeal DNA Repair Mechanisms. Biomolecules
**2020**, 10, 1472. [Google Scholar] [CrossRef] - Cox, E.C. Bacterial mutator genes and the control of spontaneous mutation. Annu. Rev. Genet.
**1976**, 10, 135–156. [Google Scholar] [CrossRef] - Castañeda-Garciá, A.; Prieto, A.I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E.D.; Herranz, M.; Plociński, P.; et al. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun.
**2017**, 8, 14246. [Google Scholar] [CrossRef] - Jiricny, J. Mismatch repair: The praying hands of fidelity. Curr. Biol.
**2000**, 10, R788–R790. [Google Scholar] [CrossRef] - Tessmer, I.; Yang, Y.; Zhai, J.; Du, C.; Hsieh, P.; Hingorani, M.M.; Erie, D.A. Mechanism of MutS searching for DNA mismatches and signaling repair. J. Biol. Chem.
**2008**, 283, 36646–36654. [Google Scholar] [CrossRef] [PubMed] - Rajski, S.R.; Jackson, B.A.; Barton, J.K. DNA repair: Models for damage and mismatch recognition. Mutat. Res. Mol. Mech. Mutagen.
**2000**, 447, 49–72. [Google Scholar] [CrossRef] [PubMed] - Erie, D.A.; Weninger, K.R. Single molecule studies of DNA mismatch repair. DNA Repair
**2014**, 20, 71–81. [Google Scholar] [CrossRef] - Rex, A. Maxwell’s Demon—A Historical Review. Entropy
**2017**, 19, 240. [Google Scholar] [CrossRef] - Mizraji, E. The biological Maxwell’s demons: Exploring ideas about the information processing in biological systems. Theory Biosci.
**2021**, 140, 307–318. [Google Scholar] [CrossRef] - McFadden, J.; Al-Khalili, J. The origins of quantum biology. Proc. R. Soc. A
**2018**, 474, 20180674. [Google Scholar] [CrossRef] [PubMed] - Kim, Y.; Bertagna, F.; D’souza, E.M.; Heyes, D.J.; Johannissen, L.O.; Nery, E.T.; Pantelias, A.; Jimenez, A.S.P.; Slocombe, L.; Spencer, M.G.; et al. Quantum Biology: An Update and Perspective. Quantum Rep.
**2021**, 3, 80–126. [Google Scholar] [CrossRef] - Ciliberto, S.; Lutz, E. The physics of information: From Maxwell to Landauer. In Energy Limits in Computation: A Review of Landauer’s Principle, Theory and Experiments; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 155–175. [Google Scholar] [CrossRef]
- Toyabe, S.; Sagawa, T.; Ueda, M.; Muneyuki, E.; Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys.
**2010**, 6, 988–992. [Google Scholar] [CrossRef] - Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev.
**1961**, 5, 183–191. [Google Scholar] [CrossRef] - Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature
**2012**, 483, 187–189. [Google Scholar] [CrossRef] [PubMed] - Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys.
**2015**, 11, 131–139. [Google Scholar] [CrossRef] - Binder, P.M.; Danchin, A. Life’s demons: Information and order in biology. EMBO Rep.
**2011**, 12, 495–499. [Google Scholar] [CrossRef] - Erbas-Cakmak, S.; Leigh, D.A.; McTernan, C.T.; Nussbaumer, A.L. Artificial Molecular Machines. Chem. Rev.
**2015**, 115, 10081–10206. [Google Scholar] [CrossRef] [PubMed] - LeBlanc, S.J.; Gauer, J.W.; Hao, P.; Case, B.C.; Hingorani, M.M.; Weninger, K.R.; Erie, D.A. Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res.
**2018**, 46, 10782–10795. [Google Scholar] [CrossRef] - Bouchal, T.; Durník, I.; Illík, V.; Réblová, K.; Kulhánek, P. Importance of base-pair opening for mismatch recognition. Nucleic Acids Res.
**2020**, 48, 11322–11334. [Google Scholar] [CrossRef] - Kimsey, I.J.; Szymanski, E.S.; Zahurancik, W.J.; Shakya, A.; Xue, Y.; Chu, C.C.; Sathyamoorthy, B.; Suo, Z.; Al-Hashimi, H.M. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature
**2018**, 554, 195–201. [Google Scholar] [CrossRef] - Li, P.; Rangadurai, A.; Al-Hashimi, H.M.; Hammes-Schiffer, S. Environmental Effects on Guanine-Thymine Mispair Tautomerization Explored with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. J. Am. Chem. Soc.
**2020**, 142, 11183–11191. [Google Scholar] [CrossRef] - Vale, R.D.; Oosawa, F. Protein motors and Maxwell’s demons: Does mechanochemical transduction involve a thermal ratchet? Adv. Biophys.
**1990**, 26, 97–134. [Google Scholar] [CrossRef] - Marais, A.; Adams, B.; Ringsmuth, A.K.; Ferretti, M.; Gruber, J.M.; Hendrikx, R.; Schuld, M.; Smith, S.L.; Sinayskiy, I.; Krüger, T.P.J.; et al. The future of quantum biology. J. R. Soc. Interface
**2018**, 15, 20180640. [Google Scholar] [CrossRef] - Bransden, B.H.; Joachain, C.J. Quantum Mechanics; Pearson/Prentice Hall: Hoboken, NJ, USA, 2000; p. 223. [Google Scholar]
- Milo, R.; Phillips, R.; Orme, N. Cell Biology by the Numbers; Garland Science, Taylor & Francis Group: New York, NY, USA, 2015; p. xxxii. [Google Scholar]
- Schmidt Am Busch, M.; Müh, F.; El-Amine Madjet, M.; Renger, T. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett.
**2011**, 2, 93–98. [Google Scholar] [CrossRef] [PubMed] - Akaike, K.; Kubozono, Y. Correlation between energy level alignment and device performance in planar heterojunction organic photovoltaics. Org. Electron.
**2013**, 14, 1–7. [Google Scholar] [CrossRef] - Cao, J.; Cogdell, R.J.; Coker, D.F.; Duan, H.G.; Hauer, J.; Kleinekathöfer, U.; Jansen, T.L.C.; Mančal, T.; Dwayne Miller, R.J.; Ogilvie, J.P.; et al. Quantum biology revisited. Sci. Adv.
**2020**, 6, eaaz4888. [Google Scholar] [CrossRef] - Li, X.; Zhang, Q.; Yu, J.; Xu, Y.; Zhang, R.; Wang, C.; Zhang, H.; Fabiano, S.; Liu, X.; Hou, J.; et al. Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat. Commun.
**2022**, 13, 2046. [Google Scholar] [CrossRef] [PubMed] - Sancar, A. Excision repair invades the territory of mismatch repair. Nat. Genet.
**1999**, 21, 247–249. [Google Scholar] [CrossRef] [PubMed] - Kunkel, T.A. Evolving Views of DNA Replication (In)Fidelity. In Cold Spring Harbor Symposia on Quantitative Biology; NIH Public Access: Bethesda, MD, USA, 2009; Volume 74, pp. 91–101. [Google Scholar] [CrossRef]
- St Charles, J.A.; Liberti, S.E.; Williams, J.S.; Lujan, S.A.; Kunkel, T.A. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair
**2015**, 31, 41–51. [Google Scholar] [CrossRef] - Peyret, N.; Seneviratne, P.A.; Allawi, H.T.; SantaLucia, J. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches. Biochemistry
**1999**, 38, 3468–3477. [Google Scholar] [CrossRef] - Wiltschko, W.; Wiltschko, R. Magnetic Compass of European Robins. Science
**1972**, 176, 62–64. [Google Scholar] [CrossRef] - Hore, P.J.; Mouritsen, H. The Radical-Pair Mechanism of Magnetoreception. Annu. Rev. Biophys.
**2016**, 45, 299–344. [Google Scholar] [CrossRef] - Harada, S.I.; Yamada, S.; Kuramata, O.; Gunji, Y.; Kawasaki, M.; Miyakawa, T.; Yonekura, H.; Sakurai, S.; Bessho, K.; Hosono, R.; et al. Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free DNA mismatch repair. Bioelectromagnetics
**2001**, 22, 260–266. [Google Scholar] [CrossRef] - Zadeh-Haghighi, H.; Simon, C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface
**2022**, 19, 20220325. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**A theoretical framework of MMR, focusing on a hypothetical enzyme we refer to as Enz, which shares basic characteristics with MutS/MutL. Enz undergoes a series of conformational changes driven by the energy derived from ATP. The subject of the framework is a complex composed of Enz, a base pair, and ATP/ADP molecules. The total energy of the complex, represented on the vertical axis, includes the chemical energy stored in ATP. Dotted lines indicate multi-step changes or blurry details between states, while solid lines represent quantum transitions that occur during base pair recognition. Enz only takes certain configurations, which are eigenstate solutions to the Schrödinger equation; therefore, a change in configuration is a quantum transition. The coupling between Enz and the base pair is a quantum coupling, which significantly influences the energy level of the complex. (

**a**) A–T correct match. In state S, the complex takes the lowest energy level and an open conformation. Upon binding to two ATP molecules, hydrolysis of one ATP leads to a closed conformation, resulting in state B. At this stage, the complex reaches its highest energy level, primed for the recognition process. The transition occurs upon hydrolysis of the second ATP, leading to either state W or state R. In state R, Enz slides to the next base pair, initiating a new round of recognition. In state W, Enz signals for repair. (

**b**) G–T mismatch. The complex undergoes a similar dynamic process, although the energy levels are rearranged due to the involvement of a different base pair.

**Figure 2.**Base pair recognition through quantum transitions. A quantum transition involves a jump from the highest energy level to a lower energy level. However, quantum transitions between low energy levels are suppressed. (

**a**) In the case of an A–T correct match, the number of microscopic states associated with state R (denoted as ${N}_{R}$) is greater than the number of microscopic states associated with state W (denoted as ${N}_{W}$), meaning that ${N}_{R}>{N}_{W}$. When the system is in state R, it actually exists in a specific microscopic state, ${R}_{j}$, where $j=1,2,\cdots $, at any given time. ${R}_{j}$ specifies the thermal vibrations in the system’s atoms. We can regard ${R}_{j}$ as a distinct quantum state and ${N}_{R}$ as a degeneracy. Similarly, we introduce quantum states ${B}_{i}$ and ${W}_{k}$. Before the transition occurs, the system is in a specific quantum state, such as ${B}_{1}$. According to quantum mechanics, when the transition takes place, all possible transition channels occur simultaneously. This implies that the result of the transition could be any of ${R}_{1}$, ${R}_{2}$, ⋯, ${R}_{{N}_{R}}$, ${W}_{1}$, ${W}_{2}$, ⋯, or ${W}_{{N}_{W}}$, each with similar probabilities given that the Hamiltonian does not strongly differentiate between different transition channels. Therefore, if ${N}_{R}>{N}_{W}$, the transition result is more likely to be state R than state W. The value of ${N}_{R}$ can be determined from the entropy of state R, which is related to the thermal energy of state R. For the transition $B\to R$, the thermal energy of state R increases by ${E}_{B}-{E}_{R}$. Thus, we have $ln{N}_{R}\propto {E}_{B}-{E}_{R}$. Similarly, we have $ln{N}_{W}\propto {E}_{B}-{E}_{W}$. Consequently, ${N}_{R}$ is greater than ${N}_{W}$. (

**b**) In the case of the G–T mismatch, the energy level of ${W}^{\prime}$ is lower than that of ${R}^{\prime}$, resulting in ${N}_{{W}^{\prime}}>{N}_{{R}^{\prime}}$. As a result, the transition from state ${B}^{\prime}$ is more likely to lead to state ${W}^{\prime}$ rather than state ${R}^{\prime}$.

**Figure 3.**Schematic of thermodynamics associated with the quantum transition from state B to state R. The quantities shown in the figure are purely illustrative examples. The system consists of Enz, a base pair, and ATP/ADP molecules, while the surrounding water serves as the heat bath at room temperature, T. In this particular example, state B stores an energy of $\frac{3}{4}{E}_{\mathrm{ATP}}$ plus the second ATP. Thus, ${E}_{B}=\frac{7}{4}{E}_{\mathrm{ATP}}$. State R holds an energy of $\frac{1}{2}{E}_{\mathrm{ATP}}$, which is reserved for Enz translocation. Consequently, the energy available for the quantum transition is $\frac{5}{4}{E}_{\mathrm{ATP}}$. The atoms of the system undergo random vibrations governed by the laws of thermodynamics. The energy released during the quantum transition converts into the thermal energy of the system, resulting in an increase in entropy by $\frac{5}{4}{E}_{\mathrm{ATP}}/{T}^{\prime}$, where ${T}^{\prime}$ represents the increased temperature of the system. Assuming ${E}_{\mathrm{ATP}}=20$ $kT$, we have ${E}_{S}=0$, ${E}_{B}=35$ $kT$, and ${E}_{R}=10$ $kT$. Consequently, the thermal energy of the system increases by 25 $kT$ during the quantum transition. If Enz consists of 1000 atoms, each atom would only acquire a thermal energy of 0.025 $kT$, resulting in ${T}^{\prime}\approx T$. Similar analyses can be conducted for the other three quantum transitions.

**Figure 4.**An example of energy-level shifts and energy gaps. (

**a**) Energy-level shifts. The quantum interactions between Enz and base pairs induce shifts in the energy levels. When Enz takes the conformation $W\left({W}^{\prime}\right)$ and combines with no base pairs, its energy level takes a certain value as indicated by the dotted line. However, when Enz combines with a base pair, the energy level undergoes a shift. Specifically, the A–T base pair causes the energy level to shift upward, resulting in a high value of ${E}_{W}$, while the G–T base pair causes it to shift downward, resulting in a low value of ${E}_{{W}^{\prime}}$. Similar discussions apply to the conformation $R\left({R}^{\prime}\right)$. However, for this case, the A–T base pair shifts the energy level downward, resulting in a low value of ${E}_{R}$, while the G–T base pair shifts it upward, resulting in a high value of ${E}_{{R}^{\prime}}$. These energy-level shifts are implemented in the structure of Enz through the processes of evolution. (

**b**) Two energy gaps generated from the energy-level shifts. We have two energy gaps here, associated with the A–T base pair and the G–T base pair, respectively. These energy gaps determine the sensitivity and discrimination ability of Enz. In this example, at room temperature, we have ${E}_{W}-{E}_{R}=18$ $kT$ and ${E}_{{R}^{\prime}}-{E}_{{W}^{\prime}}=5$ $kT$. The corresponding recognition errors are estimated to be ${\xi}^{\mathrm{AT}}\sim {10}^{-8}$ and ${\xi}^{\mathrm{GT}}\sim {10}^{-2}$ for the A–T and G–T base pairs, respectively.

**Figure 5.**Another example of energy-level shifts and energy gaps. (

**a**) Two energy-level shifts. The magnitudes of the energy-level shifts are the same as those in the previous example, representing the limits of Enz. However, in this case, both ${E}_{{R}^{\prime}}$ and ${E}_{R}$ have been shifted up by 2 $kT$, which can be easily achieved by introducing an additional 2 $kT$ of chemical energy into the Enz conformation $R/{R}^{\prime}$, without involving the interaction between Enz and base pairs. (

**b**) Two generated energy gaps. The energy gaps have changed accordingly. The new energy gaps are ${E}_{W}-{E}_{R}=16$ $kT$ and ${E}_{{R}^{\prime}}-{E}_{{W}^{\prime}}=7$ $kT$, resulting in recognition errors of ${\xi}^{\mathrm{AT}}\sim {10}^{-7}$ and ${\xi}^{\mathrm{GT}}\sim {10}^{-3}$, respectively.

**Figure 6.**Characteristics of an artificially constructed Enz. Enz here has three distinct configurations: B, R, and W. Upon combining with molecule $\alpha $, configuration W possesses a higher chemical energy than configuration R, i.e., ${E}_{W}^{\alpha}>{E}_{R}^{\alpha}$. Conversely, when Enz combines with molecule $\beta $, configuration R has a higher chemical energy than configuration W, i.e., ${E}_{W}^{\beta}<{E}_{R}^{\beta}$. It is important to emphasize that Enz is a large molecule composed of thousands of atoms, and these atoms undergo thermodynamic vibrations in various ways, resulting in different microscopic states. N represents the number of microscopic states. For instance, ${N}_{W}^{\alpha}\left(T\right)$ represents the number of microscopic states associated with configuration W when combined with molecule $\alpha $ at temperature T.

**Figure 7.**Two possible transitions when Enz combines with molecule $\alpha $. In the transition ${B}^{\alpha}\to {W}^{\alpha}$, a portion of the chemical energy, specifically ${E}_{B}^{\alpha}-{E}_{W}^{\alpha}$, is converted into thermal energy. As a result, the temperature of Enz undergoes a jump from T to ${T}^{\prime}$. In the transition ${B}^{\alpha}\to {R}^{\alpha}$, the chemical energy released is ${E}_{B}^{\alpha}-{E}_{R}^{\alpha}$. In this case, the temperature of Enz jumps from T to ${T}^{\u2033}$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, N.; Zhang, Y.
ATP-Dependent Mismatch Recognition in DNA Replication Mismatch Repair. *Quantum Rep.* **2023**, *5*, 565-583.
https://doi.org/10.3390/quantum5030037

**AMA Style**

Zhang N, Zhang Y.
ATP-Dependent Mismatch Recognition in DNA Replication Mismatch Repair. *Quantum Reports*. 2023; 5(3):565-583.
https://doi.org/10.3390/quantum5030037

**Chicago/Turabian Style**

Zhang, Nianqin, and Yongjun Zhang.
2023. "ATP-Dependent Mismatch Recognition in DNA Replication Mismatch Repair" *Quantum Reports* 5, no. 3: 565-583.
https://doi.org/10.3390/quantum5030037