Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach
Abstract
:1. Introduction
2. Schrödinger Equation without Kinetic Terms
3. Schrödinger Equation with Kinetic Dependences
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Fractional Ordinary Differential Equations
Appendix B. Fractional Partial Differential Equations
Algorithm A1 Algorithm to solve space FPDE |
|
Appendix C. List of Symbols
Symbol | Meaning |
---|---|
i | Imaginary unity. |
ℏ | Reduced Planck constant. |
Time fractional order. | |
Wave function. | |
Hamiltonian operator. | |
Time Caputo derivative. | |
Time Caputo derivative. | |
Eigenvalue of energy. | |
Strenght coupling between i and j. | |
Frequency of external perturbation. | |
Momentum operator. | |
Space fractional order. | |
Fractional momentum operator. | |
m | Mass. |
Fourier transformation. | |
Laplace transformation. | |
Probability density. | |
Time step. | |
Space step. | |
Standard deviation. | |
Mean square displacement. | |
Green function. | |
H Fox function. | |
Gamma function. |
References
- Pandey, V.; Holm, S. A fractional calculus approach to the propagation of waves in an unconsolidated granular medium. J. Acoust. Soc. Am. 2015, 138, 1766. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Rosseto, M.; Evangelista, L.; Lenzi, E.; Zola, R.; Ribeiro de Almeida, R. Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model. J. Phys. Chem. B 2022, 126, 6446–6453. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, A.M.; Barbero, G.; Evangelista, L.R.; Lenzi, E.K. Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells. Physchem 2022, 2, 163–178. [Google Scholar] [CrossRef]
- Lenzi, E.K.; Guilherme, L.; da Silva, B.; Koltun, A.; Evangelista, L.R.; Zola, R. Anomalous diffusion and electrical impedance response: Fractional operators with singular and non-singular kernels. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105907. [Google Scholar] [CrossRef]
- Chen, W.; Hu, S.; Cai, W. A causal fractional derivative model for acoustic wave propagation in lossy media. Arch. Appl. Mech. 2016, 86, 529–539. [Google Scholar] [CrossRef]
- Cai, W.; Chen, W.; Fang, J.; Holm, S. A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation. Appl. Mech. Rev. 2018, 70, 030802. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, H.; Xu, H.; Jiang, X. Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluid. Nanofluidics 2017, 21, 7. [Google Scholar] [CrossRef]
- Chang, A.; Sun, H.; Zhang, Y.; Zheng, C.; Min, F. Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs. Phys. A Stat. Mech. Its Appl. 2019, 519, 119–126. [Google Scholar] [CrossRef]
- Chang, A.; Sun, H.; Zheng, C.; Lu, B.; Lu, C.; Ma, R.; Zhang, Y. A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Phys. A Stat. Mech. Its Appl. 2018, 502, 356–369. [Google Scholar] [CrossRef]
- Pandey, V.; Holm, S. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations. J. Acoust. Soc. Am. 2016, 140, 4225–4236. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105088. [Google Scholar]
- Sultana, M.; Arshad, U.; Ali, A.H.; Bazighifan, O.; Al-Moneef, A.A.; Nonlaopon, K. New Efficient Computations with Symmetrical and Dynamic Analysis for Solving Higher-Order Fractional Partial Differential Equations. Symmetry 2022, 14, 1653. [Google Scholar] [CrossRef]
- Almeida, R. What is the best fractional derivative to fit data? Appl. Anal. Discret. Math. 2017, 11, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, F.; Yu, Q.; Li, T. Review of fractional epidemic models. Appl. Math. Model. 2021, 97, 281–307. [Google Scholar] [CrossRef]
- Diethelm, K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 2013, 71, 613–619. [Google Scholar] [CrossRef]
- Somer, A.; Novatski, A.; Serbena, F.C.; Lenzi, E.K. Interplay between super and subdiffusive behaviors in photothermal phenomena. Int. J. Therm. Sci. 2021, 159, 106539. [Google Scholar] [CrossRef]
- Templos-Hernández, D.; Quezada-Téllez, L.; Gonzáles-Hernández, B.; Rojas-Vite, G.; Pineda-Sánchez, J.; Fernández-Anaya, G.; Rodriguez-Torres, E. A fractional-order approach to cardiac rhythm analysis. Chaos Solitons Fractals 2021, 147, 110942. [Google Scholar] [CrossRef]
- Bahloul, M.A.; Aboelkassem, Y.; Laleg-Kirati, T.M. Human Hypertension Blood Flow Model Using Fractional Calculus. Front. Physiol. 2022, 13, 838593. [Google Scholar] [CrossRef]
- Cius, D.; Menon, L., Jr.; dos Santos, M.A.F.; de Castro, A.S.M.; Andrade, F.M. Unitary evolution for a two-level quantum system in fractional-time scenario. Phys. Rev. E 2022, 106, 054126. [Google Scholar] [CrossRef]
- Ullah, I.; Ahmad, S.; Arfan, M.; De la Sen, M. Investigation of Fractional Order Dynamics of Tuberculosis under Caputo Operator. Fractal Fract. 2023, 7, 300. [Google Scholar] [CrossRef]
- dos Santos, M.A.F. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- de Barros, L.C.; Lopes, M.M.; Pedro, F.S.; ao Esmi, E.; dos Santos, J.P.C.; Sánchez, D.E. The memory effect on fractional calculus: An application in the spread of COVID-19. Comput. Appl. Math. 2021, 40, 72. [Google Scholar] [CrossRef]
- Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J. On the fractional signals and systems. Signal Process. 2011, 91, 350–371. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Martynyuk, V.; Kosenkov, V.; Batista, A.G. A New Look at the Capacitor Theory. Fractal Fract. 2023, 7, 86. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Quantum Mechanics; World Scientific Publishing Company: Singapore, 2018. [Google Scholar]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractals and quantum mechanics. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 780–790. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Sandev, T.; Petreska, I.; Lenzi, E.K. Time-dependent Schrödinger-like equation with nonlocal term. J. Math. Phys. 2014, 55, 092105. [Google Scholar] [CrossRef]
- Lenzi, E.K.; de Oliveira, B.F.; da Silva, L.R.; Evangelista, L.R. Solutions for a Schrödinger equation with a nonlocal term. J. Math. Phys. 2008, 49, 032108. [Google Scholar] [CrossRef]
- Sandev, T.; Petreska, I.; Lenzi, E.K. Generalized time-dependent Schrödinger equation in two dimensions under constraints. J. Math. Phys. 2018, 59, 012104. [Google Scholar] [CrossRef]
- Petreska, I.; de Castro, A.S.M.; Sandev, T.; Lenzi, E.K. The time-dependent Schrödinger equation in three dimensions under geometric constraints. J. Math. Phys. 2019, 60, 032101. [Google Scholar] [CrossRef]
- Sandev, T.; Petreska, I.; Lenzi, E.K. Constrained quantum motion in δ-potential and application of a generalized integral operator. Comput. Math. Appl. 2019, 78, 1695–1704, Advances in Fractional Differential Equations (V): Time-space fractional PDEs. [Google Scholar] [CrossRef]
- Iomin, A. Fractional-time Schrödinger equation: Fractional dynamics on a comb. Chaos Solitons Fractals 2011, 44, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, E.K.; Evangelista, L.R.; Ribeiro, H.V.; Magin, R.L. Schrödinger Equation with Geometric Constraints and Position-Dependent Mass: Linked Fractional Calculus Models. Quantum Rep. 2022, 4, 296–308. [Google Scholar] [CrossRef]
- Meften, G.A.; Ali, A.H. Continuous dependence for double diffusive convection in a Brinkman model with variable viscosity. Acta Univ. Sapientiae Math. 2022, 14, 125–146. [Google Scholar] [CrossRef]
- Meften, G.A.; Ali, A.H.; Yaseen, M.T. Continuous dependence for thermal convection in a Forchheimer-Brinkman model with variable viscosity. AIP Conf. Proc. 2023, 2457, 020005. [Google Scholar]
- Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 2018, 167, 150–156. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A. Analytic and numerical solutions for systems of fractional Schrödinger equation. J. Inequalities Appl. 2015, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Liaqat, M.I.; Akgül, A. A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. Chaos Solitons Fractals 2022, 162, 112487. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Heydari, M.; Atangana, A. A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative. Chaos Solitons Fractals 2009, 128, 339–348. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. A family of nonlinear Schrödinger equations and their solitons solutions. Chaos Solitons Fractals 2023, 166, 112907. [Google Scholar] [CrossRef]
- Ain, Q.T.; He, J.H.; Anjum, N.; Ali, M. The fractional complex transform: A novel approach to the time-fractional Schrödinger equation. Fractals 2020, 28, 2050141. [Google Scholar] [CrossRef]
- Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.; Petreska, I.; Sandev, T. Fractional Schrödinger equation and anomalous relaxation: Nonlocal terms and delta potentials. Mod. Phys. Lett. A 2021, 36, 2140004. [Google Scholar] [CrossRef]
- Naber, M. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Okposo, N.I.; Veeresha, A.; Okposo, E.N. Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chin. J. Phys. 2022, 77, 965–984. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Zhong, H.; Zhang, J.; Belić, M.R.; Zhang, Y. Resonant mode conversions and Rabi oscillations in a fractional Schröridinger equation. Opt. Express 2017, 25, 32401–32410. [Google Scholar] [CrossRef]
- Gabrick, E.C.; Sayari, E.; de Castro, A.S.M.; Trobia, J.; Batista, A.M.; Lenzi, E.K. Fractional Schrödinger Equation and Time Dependent Potentials. Commun. Nonlinear Sci. Numer. Simul. 2023, 123, 107275. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Lenzi, E.K. An Introduction to Anomalous Diffusion and Relaxation; Springer Nature: Berlin, Germany, 2023. [Google Scholar]
- Bayin, S.S. Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 2016, 57, 123501. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.; Yu, T. Non-Markovian Relaxation of a Three-Level System: Quantum Trajectory Approach. Phys. Rev. Lett. 2010, 105, 240403. [Google Scholar] [CrossRef] [Green Version]
- Castanos, O.; Cordero, S.; Lopez-Pena, R.; Nahmad-Achar, E. Single and collective regimes in three-level systems interacting with a one-mode electromagnetic field. J. Phys. Conf. Ser. 2014, 512, 012006. [Google Scholar] [CrossRef] [Green Version]
- Petiziol, F.; Arimondo, E.; Giannelli, L.; Mintert, F.; Wimberger, S. Optimized three-level quantum transfers based on frequency-modulated optical excitations. Sci. Rep. 2020, 10, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzì, A.; Stadler, G.; Hohenester, U. Optimal quantum control in nanostructures: Theory and application to a generic three-level system. Phys. Rev. A 2002, 66, 053811. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhang, A.; Cao, N.; Xu, H.; Zheng, K.; Poon, Y.T.; Sze, N.S.; Xu, P.; Zeng, B.; Zhang, L. Observing Geometry of Quantum States in a Three-Level System. Phys. Rev. Lett. 2020, 125, 150401. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L.P.; Li, Y.; Sun, C.P. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 2013, 111, 103604. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Diethelm, K.; Ford, N.; Freed, A.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 2005, 194, 743–773. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Yu, X. Time fractional evolution of the two-level system interacting with light field. Laser Phys. Lett. 2017, 14, 115202. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function; Springer: New York, NY, USA, 2010. [Google Scholar]
- Saxena, R.; Mathai, A.; Haubold, H. Fractional reaction-diffusion equations. Astrophys. Space Sci. 2006, 305, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Liu, F. Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. Anziam J. 2005, 46, C871–C887. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Shen, S.; Turner, I.W. Analysis of a Discrete non-Markovian Random Walk Approximation for the Time Fractional Diffusion Equation. Anziam J. 2005, 46, C488–C504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, E.K.; Gabrick, E.C.; Sayari, E.; de Castro, A.S.M.; Trobia, J.; Batista, A.M. Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach. Quantum Rep. 2023, 5, 442-458. https://doi.org/10.3390/quantum5020029
Lenzi EK, Gabrick EC, Sayari E, de Castro ASM, Trobia J, Batista AM. Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach. Quantum Reports. 2023; 5(2):442-458. https://doi.org/10.3390/quantum5020029
Chicago/Turabian StyleLenzi, Ervin K., Enrique C. Gabrick, Elaheh Sayari, Antonio S. M. de Castro, José Trobia, and Antonio M. Batista. 2023. "Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach" Quantum Reports 5, no. 2: 442-458. https://doi.org/10.3390/quantum5020029
APA StyleLenzi, E. K., Gabrick, E. C., Sayari, E., de Castro, A. S. M., Trobia, J., & Batista, A. M. (2023). Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach. Quantum Reports, 5(2), 442-458. https://doi.org/10.3390/quantum5020029