# Conditions for Graviton Emission in the Recombination of a Delocalized Mass

## Abstract

**:**

## 1. Introduction and Background

## 2. Conditions for Graviton Emission

## 3. Contrasting with Collapse Models

## 4. Summary and Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Evaluation of Gravitational Gradients and Their Variations

## References

- Feynman, R.P. The Role of Gravitation in Physics; DeWitt, C.M., Rickles, D., Eds.; Report from the 1957 Chapel Hill Conference; Max Planck Research Library for the History and Development of Knowledge: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Carney, D.; Stamp, P.C.E.; Taylor, J.M. Tabletop experiments for quantum gravity: A user’s manual. Class. Quantum Gravity
**2019**, 36, 034001. [Google Scholar] [CrossRef] - Huggett, N.; Linnemann, N.; Schneider, M. Quantum gravity in a laboratory? arXiv
**2022**, arXiv:2205.09013. [Google Scholar] - Aspelmeyer, M. How to avoid the appearance of a classical world in gravity experiments. arXiv
**2022**, arXiv:2203.05587. [Google Scholar] - Bahrami, M.; Bassi, A.; McMillen, S.; Paternostro, M.; Ulbricht, H. Is gravity quantum? arXiv
**2015**, arXiv:1507.05733. [Google Scholar] - Carlesso, M.; Bassi, A.; Paternostro, M.; Ulbricht, H. Testing the gravitational field generated by a quantum superposition. New J. Phys.
**2019**, 21, 093052. [Google Scholar] [CrossRef] - Anastopoulos, C.; Hu, B.-L. Probing a gravitational cat state. Class. Quantum Gravity
**2015**, 32, 165022. [Google Scholar] [CrossRef] - Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toros, M.; Paternostro, M.; Geraci, A.; Barker, P.; Kim, M.S.; Milburn, G. A spin entanglement witness for quantum gravity. Phys. Rev. Lett.
**2017**, 119, 240401. [Google Scholar] [CrossRef] - Marletto, C.; Vedral, V. Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett.
**2017**, 119, 240402. [Google Scholar] [CrossRef] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys.
**2009**, 81, 865. [Google Scholar] [CrossRef] - Krisnanda, T.; Zuppardo, M.; Paternostro, M.; Paterek, T. Revealing non-classicality of inaccessible objects. Phys. Rev. Lett.
**2017**, 119, 120402. [Google Scholar] [CrossRef] - Fragkos, V.; Kopp, M.; Pikovski, I. On inference of quantization from gravitationally induced entanglement. AVS Quantum Sci.
**2022**, 4, 045601. [Google Scholar] [CrossRef] - Pedernales, J.S.; Streltsov, K.; Plenio, M.B. Enhancing gravitational interaction between quantum systems by a massive mediator. Phys. Rev. Lett.
**2022**, 128, 110401. [Google Scholar] [CrossRef] - Mari, A.; Palma, G.D.; Giovannetti, V. Experiments testing macroscopic quantum superpositions must be slow. Sci. Rep.
**2016**, 6, 22777. [Google Scholar] [CrossRef] [PubMed] - Belenchia, A.; Wald, R.M.; Giacomini, F.; Castro-Ruiz, E.; Brukner, Č.; Aspelmeyer, M. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D.
**2018**, 98, 126009. [Google Scholar] [CrossRef] - Baym, G.; Ozawa, T. Two-slit diffraction with highly charged particles: Niels Bohr’s consistency argument that the electromagnetic field must be quantized. Proc. Natl. Acad. Sci. USA
**2009**, 106, 3035. [Google Scholar] [CrossRef] - Belenchia, A.; Wald, R.M.; Giacomini, F.; Castro-Ruiz, E.; Brukner, Č.; Aspelmeyer, M. Information content of the gravitational field of a quantum superposition. Int. J. Mod. Phys. D
**2019**, 28, 1943001. [Google Scholar] [CrossRef] - Danielson, D.L.; Satishchandran, G.; Wald, R.M. Gravitationally mediated entanglement: Newtonian field vs. gravitons. Phys. Rev. D
**2022**, 105, 086001. [Google Scholar] [CrossRef] - Rydving, E.; Aurell, E.; Pikovski, I. Do Gedankenexperiments compel quantization of gravity? Phys. Rev. D
**2021**, 104, 086024. [Google Scholar] [CrossRef] - Großardt, A. Comment on “Do Gedankenexperiments compel quantization of gravity”. arXiv
**2021**, arXiv:2107.14666. [Google Scholar] - Ford, L.H. Gravitational radiation by quantum systems. Ann. Phys.
**1982**, 144, 238. [Google Scholar] [CrossRef] - Breuer, H.-P.; Petruccione, F. Destruction of quantum coherence through emission of bremsstrahlung. Phys. Rev. A
**2001**, 63, 032102. [Google Scholar] [CrossRef] - Mazzitelli, F.D.; Paz, J.P.; Villanueva, A. Decoherence and recoherence from vacuum fluctuations near a conducting plate. Phys. Rev. A
**2003**, 68, 062106. [Google Scholar] [CrossRef] - Ávila, P.; Okon, E.; Sudarsky, D.; Wiedemann, M. Quantum spatial superpositions and the possibility of superluminal signaling. arXiv
**2022**, arXiv:2204.01190. [Google Scholar] - Margalit, Y.; Dobkowski, O.; Zhou, Z.; Amit, O.; Japha, Y.; Moukouri, S.; Rohrlich, D.; Mazumdar, A.; Bose, S.; Henkel, C. Realization of a complete Stern-Gerlach interferometer: Towards a test of quantum gravity. Sci. Adv.
**2021**, 7, eabg2879. [Google Scholar] [CrossRef] - Bar-Gill, N.; Pham, L.M.; Jarmola, A.; Budker, D.; Walsworth, R.L. Solid-state electronic spin coherence time approaching one second. Nat. Commun.
**2013**, 4, 1743. [Google Scholar] [CrossRef] - Pino, H.; Prat-Camps, J.; Sinha, K.; Venkatesh, B.P.; Romero-Isart, O. On-chip quantum interference of a superconducting microsphere. Quantum Sci. Technol.
**2018**, 3, 25001. [Google Scholar] [CrossRef] - Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A
**1984**, 105, 199. [Google Scholar] [CrossRef] - Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A
**1987**, 120, 377. [Google Scholar] [CrossRef] - Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit.
**1996**, 28, 581. [Google Scholar] [CrossRef] - Howl, R.; Penrose, R.; Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose-Einstein condensate. New J. Phys.
**2019**, 21, 043047. [Google Scholar] [CrossRef] - Diósi, L. On the conjectured gravity-related collapse rate E
_{Δ}/ℏ of massive quantum superpositions. AVS Quantum Sci.**2022**, 4, 015605. [Google Scholar] [CrossRef] - Donadi, S.; Piscicchia, K.; Curceanu, C.; Diósi, L.; Laubenstein, M.; Bassi, A. Underground test of gravity-related wave function collapse. Nat. Phys.
**2021**, 17, 74. [Google Scholar] [CrossRef] - Christodoulou, M.; Rovelli, C. On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B
**2019**, 792, 64. [Google Scholar] [CrossRef] - Nicolini, P. Quantum gravity and the zero point length. Gen. Relativ. Gravit.
**2022**, 54, 106. [Google Scholar] [CrossRef] - Kothawala, D. Minimal length and small scale structure of spacetime. Phys. Rev. D
**2013**, 88, 104029. [Google Scholar] [CrossRef] - Kothawala, D.; Padmanabhan, T. Grin of the Cheshire cat: Entropy density of spacetime as a relic from quantum gravity. Phys. Rev. D
**2014**, 90, 124060. [Google Scholar] [CrossRef] - Hari, K.; Kothawala, D. Effect of tidal curvature on dynamics of accelerated probes. Phys. Rev. D
**2021**, 104, 064032. [Google Scholar] [CrossRef] - Singh, R.; Kothawala, D. Covariant formulation of the generalized uncertainty principle. Phys. Rev. D
**2022**, 105, L101501. [Google Scholar] [CrossRef] - Padmanabhan, T. Gravity and quantum theory: Domains of conflict and contact. Int. J. Mod. Phys. D
**2020**, 29, L2030001. [Google Scholar] [CrossRef] - Padmanabhan, T.; Chakraborty, S. Microscopic origin of Einstein’s field equations and the raison d’e^tre for a positive cosmological constant. Phys. Lett. B
**2022**, 824, 136828. [Google Scholar] [CrossRef] - Pesci, A. Zero-point gravitational field equations. Class. Quantum Gravity
**2021**, 38, 145007. [Google Scholar] [CrossRef] - Pesci, A. Expectation values of minimum-length Ricci scalar. Int. J. Mod. Phys. D
**2022**, 31, 2250007. [Google Scholar] [CrossRef] - Pesci, A. Quantum states for a minimum-length spacetime. Particles
**2022**, 5, 426–441. [Google Scholar] [CrossRef] - Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: New York, NY, USA, 1973. [Google Scholar]

**Figure 1.**Setup of the thought experiment [15,16] as used in the analysis here (see main text). The x coordinate is distance taken from Alice’s system’s center of mass C (lab + her particle A), and C’s worldline acts as the time axis. At a same time ($t=0$), Alice starts recombining A, from a (held from long before) superposition of locations (with separation d), and Bob releases his particle B located at a distance $D\gg d$ from A. Alice completes her task in a time ${T}_{A}$ while Bob checks the position of B at $t={T}_{B}$. The labels 0 and 1 tag the superposed configurations of the system (no superposition for particle B in case gravity is not able to entangle). f tags A when it is undelocalized, assuming it is located at a small distance ${\overline{x}}_{A}$ from C.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pesci, A.
Conditions for Graviton Emission in the Recombination of a Delocalized Mass. *Quantum Rep.* **2023**, *5*, 426-441.
https://doi.org/10.3390/quantum5020028

**AMA Style**

Pesci A.
Conditions for Graviton Emission in the Recombination of a Delocalized Mass. *Quantum Reports*. 2023; 5(2):426-441.
https://doi.org/10.3390/quantum5020028

**Chicago/Turabian Style**

Pesci, Alessandro.
2023. "Conditions for Graviton Emission in the Recombination of a Delocalized Mass" *Quantum Reports* 5, no. 2: 426-441.
https://doi.org/10.3390/quantum5020028