The Open Systems View and the Everett Interpretation
Abstract
:1. Introduction
2. The General Quantum Theory of Open Systems
A system-theoretic description of an open system has to be considered as phenomenological; the requirement that it should be derivable from the fundamental automorphic dynamics of a closed system implies that the dynamical map of an open system has to be completely positive(p. 435, our emphasis).
3. The Open Systems View and the Everett Interpretation
[i]nvoking it seems to compromise a chief selling point of the Everett interpretation, which is that many-worlds follows from the unitary dynamics, with no added principles or special assumptions. This is what puts the Everett interpretation in a class of its own when it comes to the quantum realism problem: there are plenty of avenues for obtaining (at least non-relativistic) one-world theories if we are prepared to violate this precept.([25], p. 193).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myrvold, W.C. Philosophical Issues Raised by Quantum Theory and its Interpretations. In The Oxford Handbook of the History of Quantum Interpretations; Freire, O., Ed.; Oxford University Press: Oxford, UK, 2022; pp. 53–76. [Google Scholar]
- Janas, M.; Cuffaro, M.E.; Janssen, M. Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Brukner, Č. On the Quantum Measurement Problem. In Quantum [Un] Speakables II; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–117. [Google Scholar]
- Bub, J. Bananaworld: Quantum Mechanics for Primates; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Bub, J.; Pitowsky, I. Two Dogmas About Quantum Mechanics. In Many Worlds? Everett, Quantum Theory, and Reality; Saunders, S., Barrett, J., Kent, A., Wallace, D., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 433–459. [Google Scholar]
- Demopoulos, W. On Theories; Harvard University Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Fuchs, C.A.; Mermin, N.D.; Schack, R. An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 2014, 82, 749–754. [Google Scholar] [CrossRef]
- Healey, R. The Quantum Revolution in Philosophy; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Rovelli, C. Helgoland: Making Sense of the Quantum Revolution; Riverhead Books: New York, NY, USA, 2021. [Google Scholar]
- Cuffaro, M.E.; Hartmann, S. The Open Systems View. arXiv 2021, arXiv:2112.11095v1. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wallace, D. On the Plurality of Quantum Theories: Quantum Theory as a Framework, and its Implications for the Quantum Measurement Problem. In Realism and the Quantum; French, S., Saatsi, J., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 78–102. [Google Scholar]
- Gleason, A.M. Measures on the Closed Subspaces of a Hilbert Space. J. Math. Mech. 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Busch, P. Quantum States and Generalized Observables: A Simple Proof of Gleason’s Theorem. Phys. Rev. Lett. 2003, 91, 120403. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G.; Mathews, P.M.; Rau, J. Stochastic Dynamics of Quantum-Mechanical Systems. Phys. Rev. 1961, 121, 920–924. [Google Scholar] [CrossRef]
- Jordan, T.F.; Sudarshan, E.C.G. Dynamical Mappings of Density Operators in Quantum Mechanics. J. Math. Phys. 1961, 2, 772–775. [Google Scholar] [CrossRef]
- Jordan, T.F.; Shaji, A.; Sudarshan, E.C.G. Dynamics of Initially Entangled Open Quantum Systems. Phys. Rev. A 2004, 70, 052110. [Google Scholar] [CrossRef]
- Shaji, A.; Sudarshan, E.C.G. Who’s Afraid of Not Completely Positive Maps? Phys. Lett. A 2005, 341, 48–54. [Google Scholar] [CrossRef]
- Dominy, J.M.; Shabani, A.; Lidar, D.A. A General Framework for Complete Positivity. Quantum Inf. Process. 2016, 15, 465–494. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Pechukas, P. Reduced Dynamics Need Not Be Completely Positive. Phys. Rev. Lett. 1994, 73, 1060–1062. [Google Scholar] [CrossRef]
- Cuffaro, M.E.; Myrvold, W.C. On the Debate Concerning the Proper Characterisation of Quantum Dynamical Evolution. Philos. Sci. 2013, 80, 1125–1136. [Google Scholar] [CrossRef]
- Stinespring, W.F. Positive Functions on C*-algebras. Proc. Am. Math. Soc. 1955, 6, 211. [Google Scholar]
- Raggio, G.A.; Primas, H. Remarks on “On Completely Positive Maps in Generalized Quantum Dynamics”. Found. Phys. 1982, 12, 433–435. [Google Scholar] [CrossRef]
- Saunders, S. Chance in the Everett Interpretation. In Many Worlds? Everett, Quantum Theory, and Reality; Saunders, S., Barrett, J., Kent, A., Wallace, D., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 181–205. [Google Scholar]
- Chen, E.K. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State. Br. J. Philos. Sci. 2018; in press. [Google Scholar] [CrossRef]
- Chen, E.K. The Past Hypothesis and the Nature of Physical Laws. In Time’s Arrows and the Probability Structure of the World; Loewer, B., Winsberg, E., Weslake, B., Eds.; Harvard University Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Chen, E.K. Time’s Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities. In Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature; Allori, V., Ed.; World Scientific: Jersey City, NJ, USA, 2020; pp. 479–515. [Google Scholar]
- Maroney, O.J.E. The Physical Basis of the Gibbs-von Neumann Entropy. arXiv 2008, arXiv:quant-ph/0701127v2. [Google Scholar]
- Robertson, K. In Search of the Holy Grail: How to Reduce the Second Law of Thermodynamics. Br. J. Philos. Sci. 2020; In press. [Google Scholar]
- Wallace, D.; Timpson, C.G. Quantum Mechanics on Spacetime I: Spacetime State Realism. Br. J. Philos. Sci. 2010, 61, 697–727. [Google Scholar] [CrossRef]
- Wallace, D. The Emergent Multiverse; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Wallace, D. Why Black Hole Information Loss Is Paradoxical. In Beyond Spacetime: The Foundations of Quantum Gravity; Huggett, N., Matsubara, K., Wüthrich, C., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 209–236. [Google Scholar]
- Smeenk, C.; Ellis, G. Philosophy of Cosmology. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Sloan, D. New Action for Cosmology. Phys. Rev. D 2021, 103, 043524. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Giddings, S.B. Black Holes, Quantum Information, and the Foundations of Physics. Phys. Today 2013, 66, 30–35. [Google Scholar] [CrossRef]
- Page, D.N. Is Our Universe an Open System? In Proceedings of the Third Marcel Grossmann Meeting on General Relativity; Ning, H., Ed.; North-Holland: Amsterdam, The Netherlands, 1983; pp. 1153–1155. [Google Scholar]
- Gryb, S.; Sloan, D. When Scale is Surplus. arXiv 2021, arXiv:2103.07384v2. [Google Scholar] [CrossRef]
- Sloan, D. Dynamical similarity. Phys. Rev. D 2018, 97, 123541. [Google Scholar] [CrossRef]
- Castro-Ruiz, E.; Giacomini, F.; Belenchia, A.; Brukner, Č. Quantum Clocks and the Temporal Localisability of Events in the Presence of Gravitating Quantum Systems. Nat. Commun. 2020, 11, 2672. [Google Scholar] [CrossRef]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, Č. Quantum Mechanics and the Covariance of Physical Laws in Quantum Reference Frames. Nat. Commun. 2019, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Oriti, D. The Complex Timeless Emergence of Time in Quantum Gravity. In Time and Science; Harris, P., Lestienne, R., Eds.; World Scientific: Jersey City, NJ, USA, 2021. [Google Scholar]
- Zeh, H.D. The Physical Basis of the Direction of Time, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Herbst, T.; Scheidl, T.; Fink, M.; Handsteiner, J.; Wittmann, B.; Ursin, R.; Zeilinger, A. Teleportation of Entanglement over 143 km. Proc. Natl. Acad. Sci. USA 2015, 112, 14202–14205. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Cao, Y.; Li, Y.-H.; Liao, S.-K.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, B.; Daiet, H. Satellite-Based Entanglement Distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Zeh, H.D. On the Interpretation of Measurement in Quantum Theory. Found. Phys. 1970, 1, 342–349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuffaro, M.E.; Hartmann, S. The Open Systems View and the Everett Interpretation. Quantum Rep. 2023, 5, 418-425. https://doi.org/10.3390/quantum5020027
Cuffaro ME, Hartmann S. The Open Systems View and the Everett Interpretation. Quantum Reports. 2023; 5(2):418-425. https://doi.org/10.3390/quantum5020027
Chicago/Turabian StyleCuffaro, Michael E., and Stephan Hartmann. 2023. "The Open Systems View and the Everett Interpretation" Quantum Reports 5, no. 2: 418-425. https://doi.org/10.3390/quantum5020027
APA StyleCuffaro, M. E., & Hartmann, S. (2023). The Open Systems View and the Everett Interpretation. Quantum Reports, 5(2), 418-425. https://doi.org/10.3390/quantum5020027