# Some Classical Models of Particles and Quantum Gauge Theories

## Abstract

**:**

## 1. Introduction

## 2. Methods and Results

#### 2.1. Scalar Electrodynamics

#### 2.2. Dirac Equation as an Equation for One Function

#### 2.3. Algebraic Elimination of Components from the Dirac Equation in a General Form

#### 2.4. An Approach to Elimination of the Spinor Field from the Equations of Spinor Electrodynamics

#### 2.5. Lagrangian of Spinor Electrodynamics with Just One Real Function to Describe Charged Spinor Field

#### 2.6. Spinor Electrodynamics

#### 2.7. Algebraic Elimination of Spinor Components from the Dirac Equation in the Yang–Mills Field

#### 2.8. Plasma-like Model of Quantum Particles

#### 2.9. Transition to Many-Particle Theories

## 3. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Vaidman, L. Why the Many-Worlds Interpretation? Quantum Rep.
**2022**, 4, 264–271. [Google Scholar] [CrossRef] - Schrödinger, E. Dirac’s New Electrodynamics. Nature
**1952**, 169, 538. [Google Scholar] [CrossRef] - Akhmeteli, A.M. Real-Valued Charged Fields and Interpretation of Quantum Mechanics. arXiv
**2005**, arXiv:quant-ph/0509044. [Google Scholar] - Akhmeteli, A. Is no drama quantum theory possible? Int. J. Quantum Inf.
**2011**, 9 (Suppl. 17), 17–26. [Google Scholar] [CrossRef] - Akhmeteli, A. No drama quantum electrodynamics? Eur. Phys. J. C
**2013**, 73, 2371. [Google Scholar] [CrossRef] - Dirac, P.A.M. A new classical theory of electrons. Proc. R. Soc. Lond. A
**1951**, 209, 291. [Google Scholar] - Akhmeteli, A. Towards differential elimination of spinor field from spinor electrodynamics. arXiv
**2018**, arXiv:1803.08800. [Google Scholar] - Akhmeteli, A. One real function instead of the Dirac spinor function. J. Math. Phys.
**2011**, 52, 082303. [Google Scholar] [CrossRef] - Akhmeteli, A. The Dirac equation as one fourth-order equation for one function—A general, manifestly covariant form. arXiv
**2015**, arXiv:1502.02351. [Google Scholar] - Akhmeteli, A. The Dirac Equation as One Fourth-Order Equation for One Function: A General, Manifestly Covariant Form. In Quantum Foundations, Probability and Information; Khrennikov, A., Bourama, T., Eds.; Springer: Cham, Switzerland, 2018; p. 1. [Google Scholar]
- Bagrov, V.G.; Gitman, D. The Dirac Equation and Its Solutions; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014. [Google Scholar]
- Bagrov, V.G. Squaring the Dirac Equations. Russ. Phys. J.
**2018**, 61, 403. [Google Scholar] [CrossRef] - Akhmeteli, A. The Dirac equation in a Yang-Mills field as an equation for just one real function. arXiv
**2018**, arXiv:1811.02441. [Google Scholar] - Kowalski, K.; Steeb, W.H. Nonlinear Dynamical Systems and Carleman Linearization; World Scientific: Singapore, 1991. [Google Scholar]
- Kowalski, K. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems; World Scientific: Singapore, 1994. [Google Scholar]
- Nightlight. Available online: https://www.physicsforums.com/threads/youngs-experiment.44964/page-4#post-334227 (accessed on 3 November 2022).
- Akhmeteli, A. Plasma-like Description for Elementary and Composite Quantum Particles. Entropy
**2022**, 24, 261. [Google Scholar] [CrossRef] [PubMed] - Feynman, R.P. Simulating Physics with Computers. Int. J. Theor. Phys.
**1982**, 21, 467. [Google Scholar] [CrossRef] - Sanz, A.S. Bohm’s approach to quantum mechanics: Alternative theory or practical picture? Front. Phys.
**2019**, 14, 11301. [Google Scholar] [CrossRef] - Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. Generalized Unimodular Gravity in Friedmann and Kantowski–Sachs Universes. JETP Lett.
**2020**, 111, 416–421. [Google Scholar] [CrossRef] - Itzykson, C.; Zuber, J.B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Feynman, R.P.; Gell-Mann, M. Theory of the Fermi Interaction. Phys. Rev.
**1958**, 109, 193. [Google Scholar] [CrossRef] - Laporte, O.; Uhlenbeck, G.E. Application of Spinor Analysis to the Maxwell and Dirac Equations. Phys. Rev.
**1931**, 37, 1380. [Google Scholar] [CrossRef] - Bogolubov, N.N.; Logunov, A.A.; Todorov, I.T. Introduction to Axiomatic Quantum Field Theory; W. A. Benjamin, Inc.: Reading, MA, USA, 1975. [Google Scholar]
- Schweber, S.S. An Introduction to Relativistic Quantum Field Theory; Row, Peterson and Company: Evanston, IL, USA; Elmsford, NY, USA, 1961. [Google Scholar]
- Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. Lond.
**1928**, A117, 610. [Google Scholar] - Gustavson, R.; Ovchinnikov, A.; Pogudin, G. New order bounds in differential elimination algorithms. J. Symb. Comput.
**2018**, 85, 128. [Google Scholar] [CrossRef] - Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields, 3rd ed.; J. Wiley: New York, NY, USA, 1980. [Google Scholar]
- Mignani, R.; Recami, E. Complex electromagnetic four- potential and the Cabibbo–Ferrari relation for magnetic monopoles. Nuovo Cimento
**1975**, 30A, 533. [Google Scholar] [CrossRef] - Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Knapp, A. Lie Groups Beyond an Introduction; Birkhäuser: Boston, MA, USA, 1996. [Google Scholar]
- Khrennikov, A. Is the Devil in h? Entropy
**2021**, 23, 632. [Google Scholar] [CrossRef] [PubMed] - Colin, S.; Durt, T.; Willox, R.L. de Broglie’s double solution program: 90 years later. Annales de la Fondation Louis de Broglie
**2017**, 42, 19. [Google Scholar] - Strassler, M. Protons and Neutrons: The Massive Pandemonium in Matter. Available online: https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-structure-of-matter/protons-and-neutrons/ (accessed on 3 November 2022).
- Verschelde, J. Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation. ACM Trans. Math. Softw.
**1999**, 25, 251. [Google Scholar] [CrossRef] - Lee, H.W. Theory and application of the quantum phase-space distribution functions. Phys. Rep.
**1995**, 259, 147. [Google Scholar] [CrossRef] - Sebens, C.T. Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations. Found. Phys.
**2021**, 51, 1–39. [Google Scholar] [CrossRef] - Barut, A.O. Combining Relativity and Quantum Mechanics: Schrödinger’s Interpretation of ψ. Found. Phys.
**1988**, 18, 95–105. [Google Scholar] [CrossRef] - Khrennikov, A. Beyond Quantum; Pan Stanford Publishing: Singapore, 2014. [Google Scholar]
- Booth, R.I.; Chabaud, U.; Emeriau, P.E. Contextuality and Wigner negativity are equivalent for continuous-variable quantum measurements. arXiv
**2021**, arXiv:2111.13218. [Google Scholar] - Georgi, H. Effective Field Theory. Annu. Rev. Nucl. Part. Sci.
**1993**, 43, 209. [Google Scholar] [CrossRef] - Zeilinger, A.; Gähler, R.; Shull, C.G.; Treimer, W.; Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys.
**1988**, 60, 1067. [Google Scholar] [CrossRef] - Fein, Y.Y.; Geyer, P.; Zwick, P.; Kiałka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys.
**2019**, 15, 1242. [Google Scholar] [CrossRef] - Vigier, J.P. Evidence For Nonzero Mass Photons Associated With a Vacuum-Induced Dissipative Red-Shift Mechanism. IEEE Trans. Plasma Sci.
**1990**, 18, 64. [Google Scholar] [CrossRef] - Plyukhin, A.V.; Schofield, J. Stochastic model related to the Klein-Gordon equation. Phys. Rev. E
**2001**, 64, 037101. [Google Scholar] [CrossRef] - Shi, Y.; Fisch, N.J.; Qin, H. Effective-action approach to wave propagation in scalar QED plasmas. Phys. Rev. A
**2016**, 94, 012124. [Google Scholar] [CrossRef] - Stenson, E.V.; Horn-Stanja, J.; Stoneking, M.R.; Pedersen, T.S. Debye length and plasma skin depth: Two length scales of interest in the creation and diagnosis of laboratory pair plasmas. J. Plasma Phys.
**2017**, 83, 595830106. [Google Scholar] [CrossRef] - Dirac, P.A.M. Principles of Quantum Mechanics, 4th ed.; Oxford University Press: Oxford, UK, 1958; p. 263. [Google Scholar]
- Thaller, B. The Dirac Equation; Springer: Berlin/Heidelberg, Germany, 1992; p. 18. [Google Scholar]
- Catillon, P.; Cue, N.; Gaillard, M.; Genre, R.; Gouanère, M.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Roussel, L.; Spighel, M. A Search for the de Broglie Particle Internal Clock by Means of Electron Channeling. Found. Phys.
**2008**, 38, 659. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Akhmeteli, A. Some Classical Models of Particles and Quantum Gauge Theories. *Quantum Rep.* **2022**, *4*, 486-508.
https://doi.org/10.3390/quantum4040035

**AMA Style**

Akhmeteli A. Some Classical Models of Particles and Quantum Gauge Theories. *Quantum Reports*. 2022; 4(4):486-508.
https://doi.org/10.3390/quantum4040035

**Chicago/Turabian Style**

Akhmeteli, Andrey. 2022. "Some Classical Models of Particles and Quantum Gauge Theories" *Quantum Reports* 4, no. 4: 486-508.
https://doi.org/10.3390/quantum4040035