Bibliometric Analysis in the Field of Quantum Technology
Abstract
:1. Introduction
2. Quantum Technology 2.0: Foci of Research in Four Subfields
3. Methods and Dataset
3.1. Data Sources
3.2. Search Procedure
3.3. Search Queries for Fields of QT 2.0
3.3.1. Quantum Information Science and Quantum Technology in General (Q INFO)
- (1)
- Quantum information science
- (2)
- Quantum technology in general
- (3)
- Quantum theory in connection with qubits
3.3.2. Quantum Metrology, Sensing, Imaging, and Control (Q METR)
- (1)
- Quantum metrology
- (2)
- Quantum sensing
- (3)
- Quantum imaging
- (4)
- Quantum control
3.3.3. Quantum Communication and Cryptography (Q COMM)
- (1)
- Quantum communication and networking
- (2)
- Quantum cryptography
3.3.4. Quantum Computing (Q COMP)
- (1)
- Quantum computing
- (2)
- Quantum hardware systems
- (3)
- Quantum simulation
- (4)
- Quantum algorithms
- (5)
- Quantum software
3.4. Publication Output and Citation Impact Indicators
3.5. Mapping of Research Topics
4. Results
4.1. Respective Shares of Fields
4.2. Overall Growth and Growth in Terms of Fields
4.3. Contributing Countries
4.4. Visualization of the Time Evolution of Research Topics
- Red (Q METR): The manipulation of single atoms, molecules, and even (electron) spins as in quantum dots and the quantum control using light fields of coherence (lasers) lead to the realization of single qubits and of very high-precision quantum clocks.
- Brown (Q COMP): Quantum computing and computers build on quantum circuits with logic gates realized as trapped ions, anyons, or in NMR devices. On this hardware, quantum algorithms have been implemented that are much in need of quantum error correction.
- Blue (Q INFO): Quantum entanglement of states is a major subject of quantum information science, also investigating entropy and channel capacity in a generalization of Shannon’s information theory.
- Green (Q COMM): Quantum communication is built upon the quantum teleportation of pairs of entangled states, often realized by single photons, as a basis for quantum cryptography and quantum key distribution.
4.5. Visualization of the Geographical Distribution of Research Topics
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Combined Search String
Appendix A.2. Publication Output Data
Publication Year | All Papers | Q INFO | Q METR | Q COMM | Q COMP | Sum of All Fields | WoS |
---|---|---|---|---|---|---|---|
1980 | 8 | 1 | 7 | 0 | 0 | 8 | 445,586 |
1981 | 5 | 0 | 4 | 1 | 0 | 5 | 465,913 |
1982 | 6 | 1 | 5 | 0 | 0 | 6 | 486,256 |
1983 | 7 | 0 | 5 | 0 | 2 | 7 | 512,149 |
1984 | 3 | 0 | 0 | 1 | 2 | 3 | 526,237 |
1985 | 10 | 1 | 6 | 0 | 3 | 10 | 533,260 |
1986 | 9 | 0 | 5 | 0 | 4 | 9 | 536,412 |
1987 | 6 | 1 | 3 | 0 | 2 | 6 | 553,109 |
1988 | 12 | 1 | 6 | 3 | 3 | 13 | 578,654 |
1989 | 12 | 0 | 8 | 0 | 4 | 12 | 651,038 |
1990 | 20 | 0 | 13 | 1 | 6 | 20 | 720,896 |
1991 | 66 | 8 | 34 | 3 | 22 | 67 | 756,930 |
1992 | 65 | 6 | 36 | 12 | 12 | 66 | 758,014 |
1993 | 95 | 10 | 50 | 14 | 22 | 96 | 768,353 |
1994 | 112 | 10 | 63 | 15 | 24 | 112 | 802,416 |
1995 | 153 | 15 | 58 | 22 | 63 | 158 | 820,972 |
1996 | 228 | 25 | 65 | 54 | 99 | 243 | 910,249 |
1997 | 317 | 41 | 98 | 58 | 144 | 341 | 924,489 |
1998 | 462 | 66 | 114 | 83 | 257 | 520 | 951,072 |
1999 | 548 | 87 | 135 | 107 | 274 | 603 | 927,431 |
2000 | 841 | 171 | 190 | 168 | 423 | 952 | 973,109 |
2001 | 1041 | 232 | 190 | 227 | 554 | 1203 | 967,076 |
2002 | 1369 | 324 | 229 | 318 | 715 | 1586 | 987,912 |
2003 | 1634 | 379 | 297 | 369 | 848 | 1893 | 1,047,409 |
2004 | 1709 | 440 | 338 | 402 | 808 | 1988 | 1,094,068 |
2005 | 2039 | 521 | 427 | 506 | 929 | 2383 | 1,158,342 |
2006 | 2140 | 571 | 408 | 585 | 922 | 2486 | 1,226,838 |
2007 | 2418 | 663 | 488 | 647 | 1021 | 2819 | 1,340,147 |
2008 | 2565 | 687 | 490 | 706 | 1084 | 2967 | 1,428,198 |
2009 | 2946 | 752 | 637 | 805 | 1222 | 3416 | 1,503,129 |
2010 | 2762 | 858 | 568 | 743 | 1086 | 3255 | 1,522,424 |
2011 | 2858 | 918 | 698 | 738 | 1022 | 3376 | 1,604,339 |
2012 | 3018 | 955 | 754 | 742 | 1122 | 3573 | 1,710,599 |
2013 | 3391 | 1144 | 830 | 922 | 1173 | 4069 | 1,790,367 |
2014 | 3722 | 1218 | 856 | 1031 | 1347 | 4452 | 1,869,915 |
2015 | 3937 | 1368 | 928 | 1006 | 1416 | 4718 | 1,943,877 |
2016 | 4481 | 1561 | 1115 | 1162 | 1627 | 5465 | 2,019,730 |
2017 | 4552 | 1578 | 1139 | 1181 | 1656 | 5554 | 2,048,110 |
2018 | 5031 | 1687 | 1234 | 1353 | 1868 | 6142 | 2,041,007 |
Total | 54,598 | 16,300 | 12,531 | 13,985 | 21,786 | 64,602 | 41,906,032 |
Share of total papers | 0.30 | 0.23 | 0.26 | 0.40 | 1.18 |
Appendix A.3. Description of VOSviewer Thesaurus File
Unified Term in Keyword Maps | Mapped Terms |
---|---|
bb84 protocol | bb84 |
cavity qed | cavity quantum electrodynamics |
ghost image | ghosts |
nmr | nuclear magnetic resonance |
noisy quantum channel | noisy channel |
q cellular automata | (quantum-)dot cellular automata, qca |
q clock | atomic clock, rubidium atomic clock |
q computing | quantum computation |
q error correction | error correcting/correction (code), qec |
q key distribution | quantum key distribution (qkd), qkd |
q tomography | quantum state tomography |
References
- Scheidsteger, T.; Haunschild, R.; Bornmann, L.; Ettl, C. Quantum technology 2.0–topics and contributing countries from 1980 to 2018. In Proceedings of the 18th International Conference on Scientometrics & Informetrics (ISSI2021), Leuven, Belgium, 12–15 July 2021; pp. 1009–1019. Available online: https://www.issi-society.org/proceedings/issi_2021/Proceedings%1020ISSI%202021.pdf (accessed on 29 July 2021).
- Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. der Phys. 1901, 309, 553–563. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. der Phys. 1905, 322, 132–148. [Google Scholar] [CrossRef]
- Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechanik. II. Z. für Phys. 1926, 35, 557–615. [Google Scholar] [CrossRef]
- Schrödinger, E. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Ann. der Phys. 1926, 384, 734–756. [Google Scholar] [CrossRef]
- Haunschild, R.; Bornmann, L.; Marx, W. Climate change research in view of bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef] [Green Version]
- Marx, W.; Haunschild, R.; Bornmann, L. Climate change and viticulture—a quantitative analysis of a highly dynamic research field. Vitis 2017, 56, 35–43. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. The role of climate in the collapse of the Maya civilization: A bibliometric analysis of the scientific discourse. Climate 2017, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Marx, W.; Haunschild, R.; Bornmann, L. Climate and the decline and fall of the Western Roman empire: A bibliometric view on an interdisciplinary approach to answer a most classic historical question. Climate 2018, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Haunschild, R.; Barth, A.; Marx, W. Evolution of DFT studies in view of a scientometric perspective. J. Cheminformatics 2016, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornmann, L.; Haunschild, R.; Scheidsteger, T.; Ettl, C. Quantum Technology—A Bibliometric Analysis of a Maturing Research Field. 2019. Available online: https://doi.org/10.6084/m9.figshare.9731327.v1 (accessed on 1 August 2021).
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, L. The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Long, G.L.; Mueller, P.; Patterson, J. Introducing Quantum Engineering. Quantum Eng. 2019, 1, e6. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Aspect, A.; Grangier, P.; Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Clauser, J.F.; Shimony, A. Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 1978, 41, 1881–1927. [Google Scholar] [CrossRef] [Green Version]
- Freedman, S.J.; Clauser, J.F. Experimental test of local hidden-hariable theories. Phys. Rev. Lett. 1972, 28, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Tapster, P.R.; Rarity, J.G.; Owens, P.C.M. Violation of Bell’s inequality over 4 km of optical fiber. Phys. Rev. Lett. 1994, 73, 1923–1926. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for Quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Lyons, H. Atomic clocks. Sci. Am. 1957, 196, 71–82. [Google Scholar] [CrossRef]
- Chou, C.W.; Hume, D.B.; Koelemeij, J.C.J.; Wineland, D.J.; Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 2010, 104, 070802. [Google Scholar] [CrossRef] [Green Version]
- Göbel, E.O.; Siegner, U. The New International System of Units (SI)—Quantum Metrology and Quantum Standards; WILEY-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Snadden, M.J.; McGuirk, J.M.; Bouyer, P.; Haritos, K.G.; Kasevich, M.A. Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 1998, 81, 971–974. [Google Scholar] [CrossRef]
- Barry, J.F.; Turner, M.J.; Schloss, J.M.; Glenn, D.R.; Song, Y.; Lukin, M.D.; Park, H.; Walsworth, R.L. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA 2016, 113, 14133–14138. [Google Scholar] [CrossRef] [Green Version]
- D’Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. Quantum tomography. In Advances in Imaging and Electron Physics; Hawkes, P.W., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2003; Volume 128, pp. 205–308. [Google Scholar]
- D’Ariano, G.M.; Laurentis, M.D.; Paris, M.G.A.; Porzio, A.; Solimeno, S. Quantum tomography as a tool for the characterization of optical devices. J. Opt. B Quantum Semiclassical Opt. 2002, 4, S127–S132. [Google Scholar] [CrossRef]
- Blume-Kohout, R. Optimal, reliable estimation of quantum states. New J. Phys. 2010, 12, 043034. [Google Scholar] [CrossRef]
- Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332. [Google Scholar] [CrossRef]
- Padgett, M.J.; Boyd, R.W. An introduction to ghost imaging: Quantum and classical. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brif, C.; Chakrabarti, R.; Rabitz, H. Control of quantum phenomena: Past, present and future. New J. Phys. 2010, 12, 075008. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Wiesner, S. Conjugate coding. ACM Sigact News 1983, 15, 78–88. [Google Scholar] [CrossRef]
- Brassard, G. Brief history of quantum cryptography: A personal perspective. In Proceedings of the IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, Awaji, Japan, 16–19 October 2005; pp. 19–23. [Google Scholar] [CrossRef] [Green Version]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [Green Version]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Vaidman, L. Teleportation: Dream or reality? AIP Conf. Proc. 1999, 461, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Knight, W. Entangled Photons Secure Money Transfer. Available online: https://www.newscientist.com/article/dn4914-entangled-photons-secure-money-transfer/ (accessed on 29 July 2021).
- Briegel, H.-J.; Dür, W.; Cirac, J.I.; Zoller, P. Quantum Repeaters for Communication. 1998. Available online: https://arxiv.org/abs/quant-ph/9803056 (accessed on 1 August 2021).
- Yin, J.; Cao, Y.; Li, Y.-H.; Liao, S.-K.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, B.; Dai, H.; et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.-K.; Cai, W.-Q.; Handsteiner, J.; Liu, B.; Yin, J.; Zhang, L.; Rauch, D.; Fink, M.; Ren, J.-G.; Liu, W.-Y.; et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 2018, 120, 030501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.-G.; Xu, P.; Yong, H.-L.; Zhang, L.; Liao, S.-K.; Yin, J.; Liu, W.-Y.; Cai, W.-Q.; Yang, M.; Li, L.; et al. Ground-to-satellite quantum teleportation. Nature 2017, 549, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.E. Lithography and the future of Moore law. In Electron-Beam, X-ray, Euv, and Ion-Beam Submicrometer Lithographies for Manufacturing V; Warlaumont, J.M., Ed.; Proceedings of SPIE; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 1995; Volume 2437, pp. 2–17. [Google Scholar]
- Bilal, B.; Ahmed, S.; Kakkar, V. Quantum dot cellular automata: A new paradigm for digital design. Int. J. Nanoelectron. Mater. 2018, 11, 87–98. [Google Scholar]
- Lau, F.L.A.; Fischer, S. Embedding space-constrained quantum-dot cellular automata in three-dimensional tile-based self-assembly systems. In Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication Machinery, New York, NY, USA, 27–29 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.J.; Yi, X. Quantum Boson-Sampling Machine. In Proceedings of the 2015 11th International Conference on Natural Computation, Zhangjiajie, China, 15–17 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 340–398. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Finnila, A.B.; Gomez, M.A.; Sebenik, C.; Stenson, C.; Doll, J.D. Quantum annealing: A new method for minimizing multidimensional functions. Chem. Phys. Lett. 1994, 219, 343–348. [Google Scholar] [CrossRef]
- Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.; Sato, Y.; Berkley, A.J.; Reis, M.; Altomare, F.; Amin, M.H.; Boothby, K.; Bunyk, P.; Deng, C.; Enderud, C.; et al. Phase transitions in a programmable quantum spin glass simulator. Science 2018, 361, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Pudenz, K.L.; Albash, T.; Lidar, D.A. Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 2014, 5, 3243. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Wiesner, K. Quantum Cellular Automata. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2009; pp. 7154–7164. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 1985, 400, 97–117. [Google Scholar] [CrossRef]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC’96), Philadelphia, PA, USA, 22–24 May 1996; Association for Computing Machinery: New York, NY, USA, 1996; pp. 212–219. [Google Scholar] [CrossRef] [Green Version]
- Abhijith, J.; Adedoyin, A.; Ambrosiano, J.; Anisimov, P.; Bärtschi, A.; Casper, W.; Chennupati, G.; Coffrin, C.; Djidjev, H.; Gunter, D.; et al. Quantum Algorithm Implementations for Beginners. 2018. Available online: https://arxiv.org/abs/1804.03719 (accessed on 1 August 2021).
- Jordan, S. Quantum Algorithm Zoo. Available online: https://quantumalgorithmzoo.org/ (accessed on 29 July 2021).
- Tolcheev, V.O. Scientometric analysis of the current state and prospects of the development of quantum technologies. Autom. Doc. Math. Linguist. 2018, 52, 121–133. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, C.; Xu, J.; Tian, Q.; Gulín-González, J.; Liu, Q. Scientometric method for comparing on the performance of research units in the field of quantum information. In Proceedings of the 17th International Conference on Scientometrics & Informetrics-ISSI2019-with a Special STI Indicators Conference Track, Rome, Italy, 2–5 September 2019; pp. 399–410. [Google Scholar]
- Olijnyk, N.V. Examination of China’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques. PLoS ONE 2018, 13, e0190646. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, S.M.; Gupta, B.M.; Bhusan, S. Global publications output in quantum computing research: A scientometric assessment during 2007-16. Emerg. Sci. J. 2018, 2, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Seskir, Z.C.; Aydinoglu, A.U. The landscape of academic literature in quantum technologies. Int. J. Quantum Inf. 2021, 19, 2150012. [Google Scholar] [CrossRef]
- Preskill, J. Chapter 10. Quantum Shannon Theory. In Quantum Information; California Institute of Technology: Pasadena, CA, USA, 2016. [Google Scholar]
- t Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics; Springer International Publishing: Basel, Switzerland, 2016; Volume 185. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Wang, Y.-N.; Jing, L.; Yue, J.-D.; Shi, H.-D.; Zhang, Y.-L.; Mu, L.-Z. Quantum cloning machines and the applications. Phys. Rep. 2014, 544, 241–322. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; Schreiber, M. On the calculation of percentile-based bibliometric indicators. J. Am. Soc. Inf. Sci. Tec. 2013, 64, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.; Wouters, P.; Waltman, L.; de Rijcke, S.; Rafols, I. Bibliometrics: The Leiden Manifesto for research metrics. Nature 2015, 520, 429–431. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnette, E. D-Wave Demonstrates Latest Quantum Computer Prototype at SC07. Available online: https://www.zdnet.com/article/d-wave-demonstrates-latest-quantum-computer-prototype-at-sc07/ (accessed on 29 July 2021).
- Bornmann, L.; Mutz, R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 2015, 66, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Frame, J.D. Mainstream research in Latin America and the Caribbean. Interciencia 1977, 2, 143–148. [Google Scholar]
- Mittermaier, B.; Holzke, C.; Tunger, D.; Meier, A.; Glänzel, W.; Thijs, B.; Chi, P.-S. Erfassung und Analyse Bibliometrischer Indikatoren für den PFI-Monitoringbericht 2018. 2017. Available online: http://hdl.handle.net/2128/16265 (accessed on 1 August 2021).
- van Eck, N.J.; Waltman, L. VOSviewer Goes Online! (Part 1). Available online: https://www.leidenmadtrics.nl/articles/vosviewer-goes-online-part-1 (accessed on 29 July 2021).
- Kalachev, A.A. Quantum technologies in Russia. Quantum Electron. 2018, 48, 879. [Google Scholar] [CrossRef]
- Fedorov, A.K.; Akimov, A.V.; Biamonte, J.D.; Kavokin, A.V.; Khalili, F.Y.; Kiktenko, E.O.; Kolachevsky, N.N.; Kurochkin, Y.V.; Lvovsky, A.I.; Rubtsov, A.N.; et al. Quantum technologies in Russia. Quantum Sci. Technol. 2019, 4, 040501. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Russia joins race to make quantum dreams a reality. Nature 2019, 577, 14. [Google Scholar] [CrossRef]
- Raymer, M.G.; Monroe, C. The US National Quantum Initiative. Quantum Sci. Technol. 2019, 4, 020504. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, F.; Li, L.; Liu, N.-L.; Pan, J.-W. Quantum information research in China. Quantum Sci. Technol. 2019, 4, 040503. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sasaki, M.; Takesue, H. Quantum information science and technology in Japan. Quantum Sci. Technol. 2019, 4, 020502. [Google Scholar] [CrossRef]
- Roberson, T.M.; White, A.G. Charting the Australian quantum landscape. Quantum Sci. Technol. 2019, 4, 020505. [Google Scholar] [CrossRef]
- Sussman, B.; Corkum, P.; Blais, A.; Cory, D.; Damascelli, A. Quantum Canada. Quantum Sci. Technol. 2019, 4, 020503. [Google Scholar] [CrossRef]
- Riedel, M.; Kovacs, M.; Zoller, P.; Mlynek, J.; Calarco, T. Europe’s Quantum Flagship initiative. Quantum Sci. Technol. 2019, 4, 020501. [Google Scholar] [CrossRef]
- Knight, P.; Walmsley, I. UK national quantum technology programme. Quantum Sci. Technol. 2019, 4, 040502. [Google Scholar] [CrossRef]
- Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology 1993, 4, 49–57. [Google Scholar] [CrossRef]
Field of QT 2.0 | Number of Papers | Percentage of the Number of Distinct Papers | Number and Percentage of One-Field-Only Papers |
---|---|---|---|
Q INFO | 16,300 | 29.85% | 9706 (59.55%) |
Q METR | 12,531 | 22.95% | 9766 (77.93%) |
Q COMM | 13,985 | 25.61% | 9809 (70.14%) |
Q COMP | 21,786 | 39.90% | 16,545 (75.94%) |
Sum of all fields | - | 118.77% | 45,826 (83.93%) |
Years | All QT Papers | Q INFO | Q METR | Q COMM | Q COMP | WoS |
---|---|---|---|---|---|---|
1980–1999 | 2–3 | 1–2 | 3–4 | 1–2 | 1–2 | 7–8 |
1980–2011 | 4–5 | 4–5 | 4–5 | 4–5 | 5–6 | 11–12 |
1980–2018 | 6–7 | 5–6 | 6–7 | 6–7 | 7–8 | 12–13 |
Country | Country Code | #QT 2.0 | %QT 2.0 | %WoS |
---|---|---|---|---|
USA | us | 13,489 | 18.59 | 24.29 |
China | cn | 12,110 | 16.69 | 9.79 |
Germany | de | 5291 | 7.29 | 5.59 |
UK | gb | 4639 | 6.39 | 6.57 |
Japan | jp | 3982 | 5.49 | 4.76 |
Canada | ca | 3044 | 4.20 | 3.45 |
Italy | it | 2894 | 3.99 | 3.32 |
France | fr | 2558 | 3.53 | 3.82 |
Australia | au | 2413 | 3.33 | 2.59 |
India | in | 1711 | 2.36 | 2.51 |
Russian Federation | ru | 1687 | 2.32 | 1.68 |
Spain | es | 1580 | 2.18 | 2.64 |
Switzerland | ch | 1470 | 2.03 | 1.39 |
Austria | at | 1213 | 1.67 | 0.76 |
Singapore | sg | 1074 | 1.48 | 0.56 |
Brazil | br | 1031 | 1.42 | 1.70 |
South Korea | kr | 998 | 1.38 | 2.21 |
Poland | pl | 991 | 1.37 | 1.16 |
Netherlands | nl | 945 | 1.30 | 1.90 |
Israel | il | 813 | 1.12 | 0.72 |
Iran | ir | 719 | 0.99 | 0.91 |
Denmark | dk | 623 | 0.86 | 0.77 |
Sweden | se | 585 | 0.81 | 1.24 |
Taiwan | tw | 535 | 0.74 | 1.25 |
Czech Republic | cz | 530 | 0.73 | 0.62 |
Time Period | Total Numberof Papers | Occurrences of Author Keywords (Percentage) | Occurrences of Keywords Plus (Percentage) | Occurrences of Either Type of Keywords (Percentage) |
---|---|---|---|---|
1980–1999 | 2144 | 445 (20.8%) | 1350 (63.0%) | 1500 (70.0%) |
2000–2011 | 24,322 | 10,197 (41.9%) | 19,549 (80.4%) | 21,888 (90.0%) |
2012–2018 | 28,132 | 13,766 (48.9%) | 22,902 (81.4%) | 26,033 (92.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheidsteger, T.; Haunschild, R.; Bornmann, L.; Ettl, C. Bibliometric Analysis in the Field of Quantum Technology. Quantum Rep. 2021, 3, 549-575. https://doi.org/10.3390/quantum3030036
Scheidsteger T, Haunschild R, Bornmann L, Ettl C. Bibliometric Analysis in the Field of Quantum Technology. Quantum Reports. 2021; 3(3):549-575. https://doi.org/10.3390/quantum3030036
Chicago/Turabian StyleScheidsteger, Thomas, Robin Haunschild, Lutz Bornmann, and Christoph Ettl. 2021. "Bibliometric Analysis in the Field of Quantum Technology" Quantum Reports 3, no. 3: 549-575. https://doi.org/10.3390/quantum3030036
APA StyleScheidsteger, T., Haunschild, R., Bornmann, L., & Ettl, C. (2021). Bibliometric Analysis in the Field of Quantum Technology. Quantum Reports, 3(3), 549-575. https://doi.org/10.3390/quantum3030036