On the Non-Uniqueness of Statistical Ensembles Defining a Density Operator and a Class of Mixed Quantum States with Integrable Wigner Distribution
Abstract
:1. Introduction
2. The Modulation Spaces
3. Feichtinger States
4. Independence of the Statistical Ensemble
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]
- Cordero, E.; Tabacco, A. Triangular subgroups of Sp(d, ) and reproducing formulae. J. Funct. Anal. 2013, 264, 2034–2058. [Google Scholar] [CrossRef]
- de Gosson, M.; Luef, F. On the usefulness of modulation spaces in deformation quantization. J. Phys. A Math. Theor. 2009, 42, 315205. [Google Scholar] [CrossRef]
- Dias, N.C.; de Gosson, M.; Luef, F.; Prata, J.N. A pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces. J. Math. Pures Appl. 2011, 96, 423–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feichtinger, H.G. On a new Segal algebra. Monatsh. Math. 1981, 92, 269–289. [Google Scholar] [CrossRef]
- Feichtinger, H.G. Banach spaces of distributions of Wiener type and interpolation. In Proceedings of the Conference Functional Analysis and Approximation, Oberwolfach; Butzer, P., Nagy, S., Görlich, E., Eds.; Springer: Heidelberg/Berlin, Germany, 1981. [Google Scholar]
- Feichtinger, H.G. Modulation Spaces: Looking Back and Ahead Sampl. Theory Signal Image Process 2006, 5, 109–140. [Google Scholar] [CrossRef]
- Jakobsen, M.S. On a (no longer) New Segal Algebra: A review of the Feichtinger algebra. J. Fourier Anal. Appl. 2018, 24, 1579–1660. [Google Scholar] [CrossRef] [Green Version]
- de Gosson, M. Symplectic Methods in Harmonic Analysis and in Mathematical Physics; Birkhäuser: Boston, MA, USA, 2011. [Google Scholar]
- de Gosson, M. The Wigner Transform; Advanced Textbooks in Mathematics; World Scientific: Singapore, 2017. [Google Scholar]
- Reiter, H.; Stegeman, J.D. Classical Harmonic Analysis and Locally Compact Groups, 2nd ed.; Clarendon Press: Oxford, UK, 2000. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics, II. Phys. Rev. 1957, 108, 171. [Google Scholar] [CrossRef]
- Halmos, P.R.; McLaughlin, J.E. Partial isometries. Pac. J. Math. 1963, 13, 585–596. [Google Scholar] [CrossRef]
- Douglas, R.G. On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Space. Proc. Am. Math. Soc. 1966, 17, 413–415. [Google Scholar] [CrossRef]
- Bergou, J.A.; Hillery, M. Introduction to the Theory of Quantum Information Processing; Graduate Texts in Physics; Springer Science+Business Media: New York, NY, USA, 2013. [Google Scholar]
- Nielsen, M.A. Probability distributions consistent with a mixed state. Phys. Rev. A 2000, 62, 052308-1. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, CA, USA, 2010. [Google Scholar]
- Feichtinger, H.G.; Luef, F.; Cordero, E. Banach Gelfand Triples for Gabor Analysis. In Pseudo-Differential Operators; Springer: Berlin/Heidelberg, Germany, 1949; pp. 1–33. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Gosson, C.; de Gosson, M. On the Non-Uniqueness of Statistical Ensembles Defining a Density Operator and a Class of Mixed Quantum States with Integrable Wigner Distribution. Quantum Rep. 2021, 3, 473-481. https://doi.org/10.3390/quantum3030031
de Gosson C, de Gosson M. On the Non-Uniqueness of Statistical Ensembles Defining a Density Operator and a Class of Mixed Quantum States with Integrable Wigner Distribution. Quantum Reports. 2021; 3(3):473-481. https://doi.org/10.3390/quantum3030031
Chicago/Turabian Stylede Gosson, Charlyne, and Maurice de Gosson. 2021. "On the Non-Uniqueness of Statistical Ensembles Defining a Density Operator and a Class of Mixed Quantum States with Integrable Wigner Distribution" Quantum Reports 3, no. 3: 473-481. https://doi.org/10.3390/quantum3030031
APA Stylede Gosson, C., & de Gosson, M. (2021). On the Non-Uniqueness of Statistical Ensembles Defining a Density Operator and a Class of Mixed Quantum States with Integrable Wigner Distribution. Quantum Reports, 3(3), 473-481. https://doi.org/10.3390/quantum3030031