Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem
Abstract
:1. Introduction
2. Two-Slit Interference and Wave-Particle Duality
2.1. Complementarity and the Degree of Polarization
2.2. Entanglement as an Additional Coherence
3. Two Qubits in Alternating Roles
3.1. Quanton without Marker
3.2. Marker without Quanton
4. Two-Qubit Extension of the PCT
5. Discussion
Funding
Conflicts of Interest
Abbreviations
PCT | Polarization coherence theorem |
DOF | Degree of freedom |
LCR | Inductor, capacitor and resistor |
MZ | Mach-Zehnder |
Appendix A
References
- OIDA. OIDA Quantum Photonics Roadmap: Every Photon Counts. OIDA Report. 2020, Volume 3, pp. 1–70. Available online: http://www.osapublishing.org/abstract.cfm?URI=OIDA-2020-3 (accessed on 25 October 2020).
- Eberly, J.H.; Qian, X.-F.; Al Qasimi, A.; Ali, H.; Alonso, M.A.; Gutiérrez-Cuevas, R.; Little, B.J.; Howell, J.C.; Malhotra, T.; Vamivakas, A.N. Quantum and classical optics—emerging links. Phys. Scr. 2016, 91, 063003. [Google Scholar] [CrossRef]
- Wolf, E. Introduction to the Theory of Coherence and Polarization of Light; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Spreeuw, R.J.C. A classical analogy of entanglement. Found. Phys. 1998, 28, 361–374. [Google Scholar] [CrossRef]
- Borges, C.V.S.; Hor-Meyll, M.; Huguenin, J.A.O.; Khoury, A.Z. Bell-like inequality for the spin-orbit separability of a laser beam. Phys. Rev. A 2010, 82, 033833. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.-F.; Eberly, J.H. Entanglement and classical polarization states. Opt. Lett. 2011, 36, 4110–4112. [Google Scholar] [CrossRef] [PubMed]
- Kagalwala, K.H.; Di Giuseppe, G.; Abouraddy, A.F.; Saleh, E.A. Bell’s measure in classical optical coherence. Nat. Photonics 2013, 7, 72–78. [Google Scholar] [CrossRef]
- Qian, X.-F.; Little, B.; Howell, J.C.; Eberly, J.H. Shifting the quantum-classical boundary: Theory and experiment for statistically classical optical fields. Optica 2015, 2, 611–615. [Google Scholar] [CrossRef]
- Aiello, A.; Töppel, F.; Marquardt, C.; Giacobino, E.; Leuchs, G. Quantum-like nonseparable structures in optical beams. New J. Phys. 2015, 17, 043024. [Google Scholar] [CrossRef]
- McLaren, M.; Konrad, T.; Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 2015, 92, 023833. [Google Scholar] [CrossRef] [Green Version]
- Gadway, B.R.; Galvez, E.J.; De Zela, F. Bell-inequality violations with single photons entangled in momentum and polarization. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 015503. [Google Scholar] [CrossRef]
- Norrman, A.; Friberg, A.T.; Leuchs, G. Vector-light quantum complementarity and the degree of polarization. Optica 2020, 7, 93–97. [Google Scholar] [CrossRef]
- Qian, X.-F.; Konthasinghe, K.; Manikandan, S.K.; Spiecker, D.; Vamivakas, A.N.; Eberly, J.H. Turning off quantum duality. Phys. Rev. Res. 2020, 2, R012016. [Google Scholar] [CrossRef] [Green Version]
- Eberly, J.H.; Qian, X.-F.; Vamivakas, A.N. Polarization coherence theorem. Optica 2017, 4, 1113–1114. [Google Scholar] [CrossRef] [Green Version]
- Abouraddy, A.F.; Dogariu, A.; Saleh, B.E.A. Polarization coherence theorem: Comment. Optica 2019, 6, 829–830. [Google Scholar] [CrossRef]
- Eberly, J.H.; Qian, X.-F.; Vamivakas, A.N. Polarization coherence theorem: Reply. Optica 2019, 6, 831. [Google Scholar] [CrossRef]
- Englert, B.-G. Fringe visibility and which-way information: An inequality. Phys. Rev. Lett. 1996, 77, 2154–2157. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Yasin, A. Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 1988, 128, 391. [Google Scholar] [CrossRef]
- Jaeger, G.; Shimony, A.; Vaidman, L. Two interferometric complementarities. Phys. Rev. A 1995, 51, 54. [Google Scholar] [CrossRef]
- Mandel, L. Coherence and indistinguishability. Opt. Lett. 1991, 16, 1882–1883. [Google Scholar] [CrossRef]
- Ellis, J.; Dogariu, A. Complex degree of mutual polarization. Opt. Lett. 2004, 29, 536–538. [Google Scholar] [CrossRef]
- Setälä, T.; Tervo, J.; Friberg, A.T. Stokes parameters and polarization contrasts in Young’s interference experiment. Opt. Lett. 2006, f31, 2208. [Google Scholar] [CrossRef]
- Setälä, T.; Tervo, J.; Friberg, A.T. Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence. Opt. Lett. 2006, 31, 2669. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, L.-P.; Saastamoinen, K.; Friberg, A.T.; Setälä, T. Interferometric interpretation for the degree of polarization of classical optical beams. New J. Phys. 2014, 16, 113059. [Google Scholar] [CrossRef]
- Norrman, A.; Blomstedt, K.; Setälä, T.; Friberg, A.T. Complementarity and Polarization Modulation in Photon Interference. Phys. Rev. Lett. 2017, 119, 040401. [Google Scholar] [CrossRef] [PubMed]
- Jakob, M.; Bergou, J.A. Quantitative complementarity relations in bipartite systems: Entanglement as a physical reality. Opt. Commun. 2010, 283, 827–830. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.-F.; Malhotra, T.; Vamivakas, A.N.; Eberly, J.H. Coherence constraints and the last hidden optical coherence. Phys. Rev. Lett. 2016, 117, 153901. [Google Scholar] [CrossRef]
- Eberly, J.H. Correlation, coherence and context. Laser Phys. 2016, 26, 084004. [Google Scholar] [CrossRef]
- Qian, X.-F.; Vamivakas, A.N.; Eberly, J.H. Entanglement limits duality and vice versa. Optica 2018, 5, 942–947. [Google Scholar] [CrossRef] [Green Version]
- De Zela, F. Optical approach to concurrence and polarization. Opt. Lett. 2018, 43, 2603–2606. [Google Scholar] [CrossRef]
- James, D.F.V.; Kwiat, P.G.; Munro, W.J.; White, A.G. Measurement of qubits. Phys. Rev. A 2001, 64, 052312. [Google Scholar] [CrossRef] [Green Version]
- De Zela, F. Hidden coherences and two-state systems. Optica 2018, 5, 243–250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Zela, F. Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem. Quantum Rep. 2020, 2, 501-513. https://doi.org/10.3390/quantum2040035
De Zela F. Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem. Quantum Reports. 2020; 2(4):501-513. https://doi.org/10.3390/quantum2040035
Chicago/Turabian StyleDe Zela, Francisco. 2020. "Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem" Quantum Reports 2, no. 4: 501-513. https://doi.org/10.3390/quantum2040035
APA StyleDe Zela, F. (2020). Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem. Quantum Reports, 2(4), 501-513. https://doi.org/10.3390/quantum2040035