Design and Construction of Magnetic Coils for Quantum Magnetism Experiments
Abstract
:1. Introduction
1.1. Quantum Magnetism
1.2. Li-7 Machine
2. Zeeman Slower
2.1. Doppler Shift and Zeeman Force
2.2. Spin-Flip Zeeman Slower
2.3. Simulations
2.4. Slower Measurements
3. Quadrupole Magnetic Trap
3.1. Field Simulations
3.2. Trap Fields
4. Feshbach Fields
Windings and Measurements
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Orzel, C. Quantum Simulation; IOP Publishing Ltd.: Bristol, UK, 2017. [Google Scholar]
- Misguish, G.; Lhuillier, C. Frustrated Spin Systems; World Scientific: Singapore, 2005. [Google Scholar]
- Jacksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 1998, 81, 3108. [Google Scholar] [CrossRef]
- Duan, L.-M.; Demler, E.; Lukin, M.D. Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 2003, 91, 090402. [Google Scholar] [CrossRef] [PubMed]
- Mandel, O.; Greiner, M.; Widera, A.; Rom, T.; Hänsch, T.W.; Bloch, I. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 1999, 425, 937. [Google Scholar] [CrossRef] [Green Version]
- Anderlini, M.; Lee, P.J.; Brown, B.L.; Sebby-Strabley, J.; Phillips, W.D.; Porto, J.V. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 2007, 448, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotzky, S.; Cheinet, P.; Fölling, S.; Feld, M.; Schnorrberger, U.; Rey, A.M.; Polkovnikov, A.; Demler, E.A.; Lukin, M.D.; Bloch, I. Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices. Science 2008, 319, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaksch, D.; Briegel, H.-J.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Entanglement of Atoms via Cold Controlled Collisions. Phys. Rev. Lett. 1999, 82, 1975. [Google Scholar] [CrossRef] [Green Version]
- Streed, E.W.; Chikkatur, A.P.; Gustavson, T.L.; Boyd, M.; Torii, Y.; Schneble, D.; Campbell, G.K.; Pritchard, D.E.; Ketterle, W. Large atom number Bose-Einstein condensate machines. Rev. Sci. Instrum. 2006, 7, 023106. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.A. Experiments with Interacting Bose and Fermi Gases. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. [Google Scholar]
- Stan, C.A.; Ketterle, W. Multiple species atom source for laser-cooling experiments. Rev. Sci. Instrum. 2005, 76, 063113. [Google Scholar] [CrossRef] [Green Version]
- Foot, C. Atomic Physics; Oxford Univ. Press: Oxford, UK, 2005. [Google Scholar]
- Metcalf, J. Laser Cooling and Trapping; Springer: Cham, Switzerland, 1999. [Google Scholar]
- Bergeman, T.; Erez, G.; Metcalf, H. Magnetostatic trapping fields for neutral atoms. Phys. Rev. A 1987, 35, 1535. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D. Solenoid Magnet Design; Wiley-Interscience: New York, NY, USA, 1969. [Google Scholar]
- Streed, E.W. 87-Rb Bose-Einstein Condensates: Machine Construction and Quantum Zeno Experiments. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. [Google Scholar]
- Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995, 75, 3969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrich, W.; Anderson, M.H.; Ensher, J.R.; Corne, E.A. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 1995, 74, 3352. [Google Scholar] [CrossRef] [PubMed]
- Moulieras, S.; Lewenstein, M.; Puentes, G. Entanglement engineering and topological protection by discrete-time quantum walks. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 104005. [Google Scholar] [CrossRef] [Green Version]
- Huh, S.; Kim, K.; Kwon, K.; Choi, J. Observation of a strongly ferromagnetic spinor Bose-Einstein condensate. arXiv 2020, arXiv:2006.06228. [Google Scholar]
- Dimitrova, I.; Lunden, W.; Amato-Grill, J.; Jepsen, N.; Yu, Y.; Messer, M.; Rigaldo, T.; Puentes, G.; Weld, D.; Ketterle, W. Observation of two-beam collective scattering phenomena in a Bose-Einstein condensate. Phys. Rev. A 2017, 96, 051603. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puentes, G. Design and Construction of Magnetic Coils for Quantum Magnetism Experiments. Quantum Rep. 2020, 2, 378-387. https://doi.org/10.3390/quantum2030026
Puentes G. Design and Construction of Magnetic Coils for Quantum Magnetism Experiments. Quantum Reports. 2020; 2(3):378-387. https://doi.org/10.3390/quantum2030026
Chicago/Turabian StylePuentes, Graciana. 2020. "Design and Construction of Magnetic Coils for Quantum Magnetism Experiments" Quantum Reports 2, no. 3: 378-387. https://doi.org/10.3390/quantum2030026
APA StylePuentes, G. (2020). Design and Construction of Magnetic Coils for Quantum Magnetism Experiments. Quantum Reports, 2(3), 378-387. https://doi.org/10.3390/quantum2030026