Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning in a Rigetti Quantum Computer
Abstract
:1. Introduction
2. Results
2.1. Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning
- The environment system (E) contains the reference state copies.
- The register (R) interacts with E and obtains information from it.
- The agent (A) is adapted by digital feedback depending on the outcome of the measurement of the register.
2.2. Experimental Setup: Rigetti Forest Cloud Quantum Computer
Python-Implemented Algorithm
- Reward and punishment ratios: and .
- Exploration range: .
- The unitary transformation matrices: .
- Partially-random unitary operator: .
- Initial values of the random angles: . Makes for the first iteration.
- Initial value of the iteration index: .
- Number of iterations: N.
- Step 1: While , go to Step 2.
- Step 2: If
- Step 3: First quantum algorithm.First, we define the agent, environment and register qubits as,Then, we haveWe apply the policy
- Step 4: Second quantum algorithm.Subsequently, we act with on the agent qubit in order to approach it to the environment state, :Afterwards, we measure this qubit and store the result in a classical register array. We repeat Step 4 a total of 8192 times to determine the state created after applying .
- In this last step, we apply the reward function,
2.3. Experimental Results of Quantum Reinforcement Learning with the Rigetti Cloud Quantum Computer
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albarrán-Arriagada, F.; Retamal, J.C.; Solano, E.; Lamata, L. Measurement-based adaptation protocol with quantum reinforcement learning. Phys. Rev. A 2018, 98, 042315. [Google Scholar] [CrossRef] [Green Version]
- Albarrán-Arriagada, F.; Retamal, J.C.; Solano, E.; Lamata, L. Reinforcement learning for semi-autonomous approximate quantum eigensolver. Mach. Learn. Sci. Technol. 2020, 1, 015002. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, N.; Braun, D.; Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 2012, 109, 050505. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013, arXiv:1307.0411. [Google Scholar]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef]
- Wiebe, N.; Kapoor, A.; Svore, K.M. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf. Comput. 2015, 15, 316. [Google Scholar]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.K.; Pooser, R.; Siopsis, G.; Weedbrook, C. Quantum machine learning over infinite dimensions. Phys. Rev. Lett. 2017, 118, 080501. [Google Scholar] [CrossRef] [Green Version]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172. [Google Scholar] [CrossRef] [Green Version]
- Adcock, J.; Allen, E.; Day, M.; Frick, S.; Hinchli, J.; Johnson, M.; Morley-Short, S.; Pallister, S.; Price, A.; Stanisic, S. Advances in quantum machine learning. arXiv 2015, arXiv:1512.02900. [Google Scholar]
- Dunjko, V.; Taylor, J.M.; Briegel, H.J. Quantum-enhanced machine learning. Phys. Rev. Lett. 2016, 117, 130501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [PubMed] [Green Version]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195. [Google Scholar] [CrossRef]
- Lamata, L. Quantum machine learning and quantum biomimetics: A perspective. arXiv 2020, arXiv:2004.12076. [Google Scholar]
- Biswas, R.; Jiang, Z.; Kechezhi, K.; Knysh, S.; Mandrà, S.; O’Gorman, B.; Perdomo-Ortiz, A.; Petukhov, A.; Realpe-Gómez, J.; Rieffel, E.; et al. A NASA perspective on quantum computing: Opportunities and challenges. Parallel Comput. 2017, 64, 81. [Google Scholar] [CrossRef] [Green Version]
- Perdomo-Ortiz, A.; Benedetti, M.; Realpe-Gómez, J.; Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 2018, 3, 030502. [Google Scholar] [CrossRef] [Green Version]
- Perdomo-Ortiz, A.; Feldman, A.; Ozaeta, A.; Isakov, S.V.; Zhu, Z.; O’Gorman, B.; Katzgraber, H.G.; Diedrich, A.; Neven, H.; de Kleer, J.; et al. Readiness of quantum optimization machines for industrial applications. Phys. Rev. Appl. 2019, 12, 014004. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Carlini, A. Quantum learning and universal quantum matching machine. Phys. Rev. A 2002, 66, 022303. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; Realpe-Gómez, J.; Biswas, R.; Perdomo-Ortiz, A. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models. Phys. Rev. X 2017, 7, 041052. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; Realpe-Gómez, J.; Perdomo-Ortiz, A. Quantum-assisted helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices. Quantum Sci. Technol. 2018, 3, 034007. [Google Scholar] [CrossRef] [Green Version]
- Aïmeur, E.; Brassard, G.; Gambs, S. Quantum speed-up for unsupervised learning. Mach. Learn. 2013, 90, 261. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, A.A.; Nautrup, H.P.; Krenn, M.; Dunjko, V.; Tiersch, M.; Zeilinger, A.; Briegel, H.J. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. USA 2018, 115, 1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Rodriguez, U.; Lamata, L.; Escandell-Montero, P.; Martín-Guerrero, J.D.; Solano, E. Supervised Quantum Learning without Measurements. Sci. Rep. 2017, 7, 13645. [Google Scholar] [CrossRef]
- Paparo, G.D.; Dunjko, V.; Makmal, A.; Martin-Delgado, M.A.; Briegel, H.J. Quantum Speedup for Active Learning Agents. Phys. Rev. X 2014, 4, 031002. [Google Scholar] [CrossRef]
- Lamata, L. Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. Rep. 2017, 7, 1609. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-López, F.A.; Lamata, L.; Retamal, J.C.; Solano, E. Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS ONE 2018, 13, e0200455. [Google Scholar] [CrossRef]
- Dong, D.; Chen, C.; Li, H.; Tarn, T.J. Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2008, 38, 1207–1220. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D.; Levit, A.; Ghadermarzy, N.; Oberoi, J.S.; Ronagh, P. Reinforcement learning using quantum Boltzmann machines. Quant. Inf. Comput. 2018, 18, 51. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Ristè, D.; Silva, M.P.D.; Ryan, C.A.; Cross, A.W.; Córcoles, A.D.; Smolin, J.A.; Gambetta, J.M.; Chow, J.M.; Johnson, B.R. Demonstration of quantum advantage in machine learning. NPJ Quantum Inf. 2017, 3, 16. [Google Scholar] [CrossRef]
- Quantum Computing Powered by Light. Available online: https://www.xanadu.ai (accessed on 16 May 2020).
- The Quantum Cloud Service Built for Business. Available online: https://www.dwavesys.com/home (accessed on 16 May 2020).
- Quantum Computing. Available online: https://www.research.ibm.com/ibm-q/ (accessed on 16 May 2020).
- Think Quantum. Available online: https://www.rigetti.com (accessed on 16 May 2020).
- Yu, S.; Albarrán-Arriagada, F.; Retamal, J.C.; Wang, Y.-T.; Liu, W.; Ke, Z.-J.; Meng, Y.; Li, Z.-P.; Tang, J.-S.; Solano, E.; et al. Reconstruction of a Photonic Qubit State with Quantum Reinforcement Learning. Adv. Quantum Technol. 2019, 2, 1800074. [Google Scholar] [CrossRef]
0.36 | 0.24 | 0.18 | 0.03 | 0.05 | 0.24 | 0.16 | |
---|---|---|---|---|---|---|---|
99.89 | 99.72 | 99.53 | 99.20 | 97.72 | 97.53 | 94.72 | |
Initial environment state |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares-Sánchez, J.; Casanova, J.; Solano, E.; Lamata, L. Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning in a Rigetti Quantum Computer. Quantum Rep. 2020, 2, 293-304. https://doi.org/10.3390/quantum2020019
Olivares-Sánchez J, Casanova J, Solano E, Lamata L. Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning in a Rigetti Quantum Computer. Quantum Reports. 2020; 2(2):293-304. https://doi.org/10.3390/quantum2020019
Chicago/Turabian StyleOlivares-Sánchez, Julio, Jorge Casanova, Enrique Solano, and Lucas Lamata. 2020. "Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning in a Rigetti Quantum Computer" Quantum Reports 2, no. 2: 293-304. https://doi.org/10.3390/quantum2020019