Secure Quantum Communication Technologies and Systems: From Labs to Markets
Abstract
:1. Introduction
2. Quantum Key Distribution Systems and Networks
2.1. Discrete Variable Systems
2.2. Continuous Variable Systems
2.3. Quantum Security and Practical Vulnerability Issues
2.4. QKD Networking
- -
- High-isolation (> 100 dB) wavelength division multiplexing (WDM) of quantum and classical channels to remove crosstalk generated by classical channels and spontaneous emission noise generated by optical amplifiers from the quantum channel band.
- -
- A proper wavelength plan to minimize the transfer of linear and non-linear noise from classical channels into quantum channels.
- -
- Optical bypass of quantum channels in optical amplifiers and other non-quantum-compatible devices.
- -
- Signal-format transparent and independent optical switching for quantum and classical channels.
2.5. Closing Remarks on QKD Systems
3. Devices for QKD Systems
3.1. Photon Sources
3.2. Detectors
3.3. Quantum Random Number Generators
3.4. Quantum Repeaters
3.5. Technology Status Summary
4. QKD Applications
4.1. Long-Range Fiber Communication
4.2. Aerospace Communication
4.3. Internet of Things
4.4. Data Center Infrastructure
4.5. Quantum Applications Summary
5. QKD Market Perspectives
6. Industrial Roadmap
- -
- Within 3-years: standards and certification methodologies for QRNG and QKD; development of use cases and business models; cost-effective systems for inter-city and intra-city communications; protocols for the security of long-lived systems and secret sharing, exploiting quantum and classical cryptographic techniques; protocol execution over an elementary quantum repeater link using an integrated control plane and platform-independent software stack; improved device performance addressing parameter benchmarks of relevance for cryptography and network applications.
- -
- Within 6–10 years: Advanced QKD and QRNG systems for critical infrastructure, IoT, and 5G; trusted-node network functionality and interoperability for fiber, free-space, and satellite links; end-to-end security over trusted nodes and eventually repeaters between countries; integration of at least three physically distant quantum repeaters over telecom fiber, demonstrating key generation over more than 500 km; demonstrations of entanglement-based network application and satellite-based links; showcase of a network of physically distant processing nodes (e.g., in the quantum memory), with at least 20 qubits per node and programmable in platform-independent software.
- -
- A comprehensive public program for the deployment of a QKD infrastructure is being pursued by China, and comprises a ~2000 km Beijing–Shanghai quantum backbone, four metropolitan networks, a ~50km free air link, and a quantum satellite for intercontinental communications.
- -
- The government of South Korea is funding the development of a ~250 km quantum backbone connecting existing metropolitan quantum networks.
- -
- Australia is implementing a government quantum network for intra-governmental communications in Canberra.
- -
- In South Africa, a quantum communication security solution has been deployed in Durban’s municipal fiber-optic network.
- -
- In Japan, several industrial and public partners have jointly developed an extensive quantum network in Tokyo.
- -
- Besides China, satellite-based quantum communications are also currently being investigated in Japan, Canada, and the United States. In 2007m the European Space Agency published a review paper on its activity in this field, comprising a feasibility study for the placement of an entangled photon source on the International Space Station.
- -
- In the United States, a fiber-based QKD infrastructure has been in development since 2003, with a Defense Advanced Research Projects (DARPA) funded project, and several players, both public (Department of Commerce with NIST, Department of Energy with Los Alamos Labs) and private companies (mostly from the defense and aerospace sectors, e.g., Magiq, BBN Raytheon, Boeing, Batelle), are accumulating intellectual property and expertise, in some cases complemented by field deployments.
- -
- A real-world application of QKD was demonstrated in Austria in 2004. In 2007, in Switzerland the canton of Geneva transmitted ballot results using a QKD link.
- -
- A high point in European research towards practical application of quantum cryptography was achieved in 2004–2008 with the SECOQC FP6 project, which involved several academic as well as industrial partners. However, some European companies seem to have now reduced their engagement.
7. Standardization of QKD Systems
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Doscher, C.; Keyl, M. An introduction to quantum coin tossing. Fluct. Noise Lett. 2002, 2, R125–R137. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.D. Quantum cryptography on optical fiber networks. Opt. Fiber Technol. 1998, 4, 345–370. [Google Scholar] [CrossRef]
- Su, Z.-K.; Wang, F.-Q.; Jin, R.-B.; Liang, R.-S.; Liu, S.-H. A simple scheme for quantum networks based on orbital angular momentum states of photons. Opt. Commun. 2008, 281, 5063–5066. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, I.B. Multidimensional QKD Based on Combined Orbital and Spin Angular Momenta of Photon. IEEE Photonics J. 2013, 5, 7600112. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wootters, W.K.; Zurek, W.H. Nature 299 802 Dieks D 1982. Phys. Lett. A 1982, 92, 271. [Google Scholar]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303. [Google Scholar] [CrossRef] [Green Version]
- Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 2000, 61, 022309. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.D. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 2000, 62, 062308. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Patron Sanchez, R. Quantum Information with Optical Continuos Variable. Ph.D. Thesis, Universit’e libre de Bruxelles, Brussels, Belgium, 2007. [Google Scholar]
- Silberhorn, C.; Ralph, T.C.; Lutkenhaus, N.; Leuchs, G. Continuous Variable Quantum Cryptography: Beating the 3 dB Loss Limit. Phys. Rev. Lett. 2002, 89, 167901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Tang, C.; Chen, H.; Zhang, W.; Zhu, F. Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 2013, 87, 062311. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional Security Proof of Long-Distance Continuous-Variable Quantum Key Distribution with Discrete Modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerf, N.J.; Lévy, M.; Van Assche, G. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 2001, 63, 052311. [Google Scholar] [CrossRef] [Green Version]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, F.; Van Assche, G.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, F.; Cerf, N.J.; Wenger, J.; Tualle-Brouri, R.; Grangier, P. Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inform. Comput. 2003, 3, 535–552. [Google Scholar]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 2006, 73, 022316. [Google Scholar] [CrossRef] [Green Version]
- Ghalaii, M.; Ottaviani, C.; Kumar, R.; Pirandola, S.; Razavi, M. Discrete-modulation continuous-variable quantum key distribution enhanced by quantum scissor. arXiv 2019, arXiv:1907.13405. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Gehring, T.; Händchen, V.; Duhme, J.; Furrer, F.; Franz, T.; Pacher, C.; Werner, R.F.; Schnabel, R. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 2015, 6, 8795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Islam, N.T.; Lim, C.C.W.; Cahall, C.; Kim, J.; Gauthier, D.J. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 2017, 3, e1701491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.C.; Perlner, R.A.; Smith-Tone, D.C. Report on Post-Quantum Cryptography; Internal Report 8105; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Campagna, M.; Chen, L.; Dagdelen, O.; Ding, J.; Fernick, J.; Gisin, N.; Neill, B. Quantum Safe Cryptography and Security: An Introduction, Benefits, Enablers and Challenges; European Telecommunications Standards Institute: Sophia Antipolis, France, 2015; pp. 1–64. [Google Scholar]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, I.; Liu, Q.; Lamas-Linares, A.; Skaar, J.; Kurtsiefer, C.; Makarov, V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2011, 2, 349. [Google Scholar] [CrossRef] [Green Version]
- Hwang, W.-Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-W.; Yang, C.-W. Lightweight Mediated Semi-Quantum Key Distribution Protocol with a Dishonest Third Party based on Bell States. arXiv 2019, arXiv:1909.02788. [Google Scholar]
- Lo, H.-K. Quantum key distribution with vacua or dim pulses as decoy states. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Chicago, IL, USA, 27 June–2 July 2004. [Google Scholar]
- Gisin, N.; Ribordy, G.; Zbinden, H.; Stucki, D.; Brunner, N.; Scarani, V. Towards practical and fast Quantum Cryptography. arXiv. 2004. Available online: https://arxiv.org/pdf/quant-ph/0411022.pdf (accessed on 20 January 2020).
- Korzh, B.; Lim, C.C.W.; Houlmann, R.; Gisin, N.; Li, M.J.; Nolan, D.; Sanguinetti, B.; Thew, R.; Zbinden, H. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 2015, 9, 163–168. [Google Scholar] [CrossRef]
- Stucki, D.; Walenta, N.; Vannel, F.; Thew, R.T.; Gisin, N.; Zbinden, H.; Gray, S.; Towery, C.R.; Ten, S. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 2009, 11, 075003. [Google Scholar] [CrossRef] [Green Version]
- Walenta, N.; Burg, A.; Caselunghe, D.; Constantin, J.; Gisin, N.; Guinnard, O.; Houlmann, R.; Junod, P.; Korzh, B.; Kulesza, N.; et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 2014, 16, 13047. [Google Scholar] [CrossRef]
- Lamas-Linares, A.; Kurtsiefer, C. Breaking a quantum key distribution system through a timing side channel. Opt. Express 2007, 15, 9388–9393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Fung, C.-H.F.; Qi, B.; Chen, C.; Lo, H.-K. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 2008, 78, 042333. [Google Scholar] [CrossRef] [Green Version]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.-K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [Green Version]
- Valivarthi, R.; Lucio-Martinez, I.; Chan, P.; Rubenok, A.; John, C.; Korchinski, D.; Duffin, C.; Marsili, F.; Verma, V.; Shaw, M.D.; et al. Measurement-device-independent quantum key distribution: From idea towards application. J. Mod. Opt. 2015, 62, 1–10. [Google Scholar] [CrossRef]
- Yin, H.-L.; Chen, T.-Y.; Yu, Z.-W.; Liu, H.; You, L.-X.; Zhou, Y.-H.; Mao, Y.; Huang, M.-Q.; Zhang, W.-J.; Li, M.J.; et al. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Phys. Rev. Lett. 2016, 117, 190501. [Google Scholar] [CrossRef]
- Comandar, L.C.; Lucamarini, M.; Fröhlich, B.; Dynes, J.F.; Sharpe, A.W.; Tam, S.W.-B.; Yuan, Z.L.; Penty, R.V.; Shields, A.J. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics 2016, 10, 312–315. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Yin, H.-L.; Zhao, Q.; Liu, H.; Sun, X.-X.; Huang, M.-Q.; Zhang, W.-J.; Chen, S.-J.; Zhang, L.; You, L.-X.; et al. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network. Phys. Rev. X 2016, 6, 011024. [Google Scholar] [CrossRef] [Green Version]
- Valivarthi, R.; Umesh, P.; John, C.; Owen, K.A.; Verma, V.B.; Nam, S.W.; Oblak, D.; Zhou, Q.; Tittel, W. Measurement-device-independent quantum key distribution coexisting with classical communication. Quantum Sci. Technol. 2019, 4, 045002. [Google Scholar] [CrossRef]
- Xu, J.D. QKD Application: Coexistence QKD Network and Optical Network in the same optical fiber network, ITU-T Quantum Workshop Shanghai, China. 5 June 2019. Available online: https://docplayer.net/149730660-Qkd-application-coexistence-qkd-network-and-optical-network-in-the-same-optical-fiber-network.html (accessed on 20 January 2020).
- Peters, N.A.; Toliver, P.; Chapuran, T.E.; Runser, R.J.; McNown, S.R.; Peterson, C.; Rosenberg, D.; Dallmann, N.; Hughes, R.J.; McCabe, K.P.; et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 2009, 11, 45012. [Google Scholar] [CrossRef]
- Da Silva, T.F.; Xavier, G.B.; Temporão, G.P.; Von Der Weid, J.P. Impact of Raman Scattered Noise from Multiple Telecom Channels on Fiber-Optic Quantum Key Distribution Systems. J. Light. Technol. 2014, 32, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.S.Y.; Lu, Y.L.Y.; Niu, J.N.J.; Ji, A.Y.J.A.Y. Reduction of FWM noise in WDM-based QKD systems using interleaved and unequally spaced channels. Chin. Opt. Lett. 2016, 14, 60602–60607. [Google Scholar]
- Runser, R.J.; Chapuran, T.; Toliver, P.; Peters, N.A.; Goodman, M.S.; Kosloski, J.T.; Nweke, N.; McNown, S.R.; Hughes, R.J.; Rosenberg, D.; et al. Progress toward quantum communications networks: Opportunities and challenges. Integr. Optoelectron. Devices 2007, 6476, 64760. [Google Scholar]
- Runser, R.J. Demonstration of 1.3 µm Quantum Key Distribution (QKD) Compatibility with 1.5 µm Metropolitan Wavelength Division Multiplexed (WDM) Systems; Optical Society of America: Washington, DC, USA, 2005. [Google Scholar]
- Nweke, N.I.; Toliver, P.; Runser, R.J.; McNown, S.R.; Khurgin, J.B.; Chapuran, T.E.; Goodman, M.S.; Hughes, R.J.; Peterson, C.G.; McCabe, K.; et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels. Appl. Phys. Lett. 2005, 87, 174103. [Google Scholar] [CrossRef]
- Kumar, R.; Qin, H.; Alléaume, R. Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 2015, 17, 43027. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Yu, X.; Zhang, J. Quantum Key Distribution (QKD) over Software-Defined Optical Networks. Quantum Cryptogr. Adv. Netw. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mavromatis, A.; Ntavou, F.; Salas, E.H.; Kanellos, G.T.; Nejabati, R.; Simeonidou, D. Experimental Demonstration of Quantum Key Distribution (QKD) for Energy-Efficient Software-Defined Internet of Things. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Institute of Electrical and Electronics Engineers (IEEE), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Nejabati, R.; Wang, R.; Bravalheri, A.; Muqaddas, A.; Uniyal, N.; Diallo, T.; Tessinari, R.; Guimaraes, R.S.; Moazzeni, S.; Hugues-Salas, E.; et al. First Demonstration of Quantum-Secured, Inter-Domain 5G Service Orchestration and On-Demand NFV Chaining over Flexi-WDM Optical Networks. In Optical Fiber Communication Conference; Optical Society of America: Washington, DC, USA, 2019. [Google Scholar]
- Aguado, A.; Hugues-Salas, E.; Haigh, P.A.; Marhuenda, J.; Price, A.B.; Sibson, P.; Kennard, J.E.; Erven, C.; Rarity, J.G.; Thompson, M.G.; et al. Secure NFV Orchestration over an SDN-Controlled Optical Network with Time-Shared Quantum Key Distribution Resources. J. Light. Technol. 2016, 35, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Cao, Y.; Wang, W.; Wang, H.; Yu, X.; Zhang, J.; Tornatore, M.; Wu, Y.; Mukherjee, A.B. Resource Allocation in Optical Networks Secured by Quantum Key Distribution. IEEE Commun. Mag. 2018, 56, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Karinou, F.; Brunner, H.H.; Fung, C.-H.F.; Comandar, L.C.; Bettelli, S.; Hillerkuss, D.; Kuschnerov, M.; Mikroulis, S.; Wang, D.; Xie, C.; et al. Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks. IEEE Photonics Technol. Lett. 2018, 30, 650–653. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wu, Y.; Yu, X.; Zhang, J. Time-Scheduled Quantum Key Distribution (QKD) Over WDM Networks. J. Light. Technol. 2018, 36, 3382–3395. [Google Scholar] [CrossRef]
- Bahrani, S.; Razavi, M.; Salehi, J.A. Wavelength Assignment in Hybrid Quantum-Classical Networks. Sci. Rep. 2018, 8, 3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.; Hugues-Salas, E.; Ntavou, F.; Wang, R.; Bi, Y.; Yan, S.; Kanellos, G.; Nejabati, R.; Simeonidou, D. Field-Trial of Machine Learning-Assisted Quantum Key Distribution (QKD) Networking with SDN. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Institute of Electrical and Electronics Engineers (IEEE), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Cao, Y.; Zhao, Y.; Wang, J.; Yu, X.; Ma, Z.; Zhang, J. Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks. J. Opt. Commun. Netw. 2019, 11, 285–298. [Google Scholar] [CrossRef]
- Hugues-Salas, E.; Ntavou, F.; Gkounis, D.; Kanellos, G.T.; Nejabati, R.; Simeonidou, D. Monitoring and Physical-Layer Attack Mitigation in SDN-Controlled Quantum Key Distribution Networks. J. Opt. Commun. Netw. 2019, 11, A209–A218. [Google Scholar] [CrossRef]
- Wang, W.; Lo, H.-K. Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 2019, 100, 062334. [Google Scholar] [CrossRef] [Green Version]
- Asif, R.; Haithem, M.; Buchanan, W.J. Experimental High Speed Data Encryption via SDM-CV-QKD Signaling for High-Capacity Access Network; Optical Society of America: Washington, DC, USA, 2018. [Google Scholar]
- Bacco, D.; Ding, Y.; Dalgaard, K.; Rottwitt, K.; Oxenløwe, L.K. Space division multiplexing chip-to-chip quantum key distribution. Sci. Rep. 2017, 7, 12459. [Google Scholar] [CrossRef] [PubMed]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Santagati, R.; Bonneau, D.; Strain, M.J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 2015, 6, 7948. [Google Scholar] [CrossRef]
- Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al. Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-K.; Cai, W.-Q.; Liu, W.-Y.; Zhang, L.; Li, Y.; Ren, J.-G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.-P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Berraquero, C.; Kara, D.M.; Montblanch, A.R.-P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A.K.; Lončar, M.; Ferrari, A.C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093. [Google Scholar] [CrossRef]
- Celebrano, M.; Baselli, M.; Bollani, M.; Frigerio, J.; Shehata, A.B.; Della Frera, A.; Tosi, A.; Farina, A.; Pezzoli, F.; Osmond, J.; et al. Emission Engineering in Germanium Nanoresonators. ACS Photonics 2014, 2, 53–59. [Google Scholar] [CrossRef]
- Coffa, S.; Franzo, G.; Priolo, F. High efficiency and fast modulation of Er-doped light emitting Si diodes. Appl. Phys. Lett. 1996, 69, 2077–2079. [Google Scholar] [CrossRef]
- Celebrano, M.; Ghirardini, L.; Finazzi, M.; Shimizu, Y.; Tu, Y.; Inoue, K.; Nagai, Y.; Shinada, T.; Chiba, Y.; Abdelghafar, A.; et al. 1.54 μm photoluminescence from Er: Ox centers at extremely low concentration in silicon at 300 K. Opt. Lett. 2017, 42, 3311–3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuochi, N.; Makino, T.; Kato, H.; Takeuchi, D.; Ogura, M.; Okushi, H.; Nothaft, M.; Neumann, P.; Gali, A.; Jelezko, F.; et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 2012, 6, 299–303. [Google Scholar] [CrossRef]
- Salter, C.L.; Stevenson, R.M.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A.; Shields, A.J. An entangled-light-emitting diode. Nature 2010, 465, 594–597. [Google Scholar] [CrossRef]
- Martinez, N.J.D.; Gehl, M.; Derose, C.T.; Starbuck, A.L.; Pomerene, A.T.; Lentine, A.L.; Trotter, D.C.; Davids, P.S. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 2017, 25, 16130. [Google Scholar] [CrossRef]
- Yanikgonul, S.; Leong, V.X.H.; Ong, J.R.; Png, C.E.; Krivitsky, L. Simulation of Silicon Waveguide Single-Photon Avalanche Detectors for Integrated Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Celebrano, M.; Ghirardini, L.; Finazzi, M.; Ferrari, G.; Chiba, Y.; Abdelghafar, A.; Yano, M.; Shinada, T.; Tanii, T.; Prati, E. Room Temperature Resonant Photocurrent in an Erbium Low-Doped Silicon Transistor at Telecom Wavelength. Nanomaterials 2019, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Warburton, R.E.; Intermite, G.; Myronov, M.; Allred, P.; Leadley, D.R.; Gallacher, K.; Paul, D.J.; Pilgrim, N.J.; Lever, L.J.M.; Ikonić, Z.; et al. Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm. IEEE Trans. Electron. Devices 2013, 60, 3807–3813. [Google Scholar] [CrossRef]
- Movassaghi, Y.; Fathipour, V.; Fathipour, M.; Mohseni, H. Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors. Appl. Phys. Lett. 2016, 108, 121102. [Google Scholar] [CrossRef] [Green Version]
- Sibson, P.; Kennard, J.E.; Stanisic, S.; Erven, C.; O’Brien, J.L.; Thompson, M.G. Integrated silicon photonics for high-speed quantum key distribution. Optica 2017, 4, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenlowe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Mascagni, M.; Qiu, Y.; Hin, L.-Y. High performance computing in quantitative finance: A review from the pseudo-random number generator perspective. Monte Carlo Methods Appl. 2014, 20, 101–120. [Google Scholar] [CrossRef]
- Chris, H.; Schneier, B. Remote Electronic Gambling. In Proceedings of the 13 th Annual Computer Security Applications Conference, San Diego, CA, USA, 8–12 December 1997. [Google Scholar]
- Click, T.H.; Liu, A.B.; Kaminski, G.A. Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. J. Comput. Chem. 2010, 32, 513–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Ma, X.; Xu, F.; Xu, H.; Tan, X.; Qi, B.; Lo, H.-K. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 2013, 87, 062327. [Google Scholar] [CrossRef] [Green Version]
- Petrie, C.; Connelly, J. A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I Regul. Pap. 2000, 47, 615–621. [Google Scholar] [CrossRef]
- Argyris, A.; Pikasis, E.; Deligiannidis, S.; Syvridis, D. Sub-Tb/s Physical Random Bit Generators Based on Direct Detection of Amplified Spontaneous Emission Signals. J. Light. Technol. 2012, 30, 1329–1334. [Google Scholar] [CrossRef]
- Reidler, I.; Aviad, Y.; Rosenbluh, M.; Kanter, I. Ultrahigh-Speed Random Number Generation Based on a Chaotic Semiconductor Laser. Phys. Rev. Lett. 2009, 103, 024102. [Google Scholar] [CrossRef]
- Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [Google Scholar] [CrossRef] [Green Version]
- Jennewein, T.; Achleitner, U.; Weihs, G.; Weinfurter, H.; Zeilinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 2000, 71, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.; Leifgen, M.; Berlin, M.; Röhlicke, T.; Rahn, H.-J.; Benson, O. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 2011, 98, 171105. [Google Scholar] [CrossRef]
- Williams, C.R.S.; Salevan, J.C.; Li, X.; Roy, R.; Murphy, T.E. Fast physical random number generator using amplified spontaneous emission. Opt. Express 2010, 18, 23584–23597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R.; Mauerer, W.; Andersen, U.L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711–715. [Google Scholar] [CrossRef]
- Qi, B.; Chi, Y.-M.; Lo, H.-K.; Qian, L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 2010, 35, 312–314. [Google Scholar] [CrossRef]
- Jofre, M.; Curty, M.; Steinlechner, F.; Anzolin, G.; Torres, J.P.; Mitchell, M.; Pruneri, V. True random numbers from amplified quantum vacuum. Opt. Express 2011, 19, 20665. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.-Z.; Jiang, M.-S.; Sun, S.-H.; Ma, X.-C.; Li, C.-Y.; Liang, L.-M.; Guang-Zhao, T.; Mu-Sheng, J.; Shi-Hai, S.; Xiang-Chun, M.; et al. Quantum Random Number Generation Based on Quantum Phase Noise. Chin. Phys. Lett. 2013, 30, 114207. [Google Scholar] [CrossRef]
- Abellán, C.; Amaya, W.; Jofre, M.; Curty, M.; Acín, A.; Capmany, J.; Pruneri, V.; Mitchell, M. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 2014, 22, 1645. [Google Scholar] [CrossRef]
- Yuan, Z.; Lucamarini, M.; Dynes, J.F.; Fröhlich, B.; Plews, A.; Shields, A.J. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 2014, 104, 261112. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.-Q.; Huang, L.; Liu, Y.; Payne, F.; Zhang, J.; Pan, J.-W. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 2015, 86, 063105. [Google Scholar] [CrossRef] [Green Version]
- Abellán, C.; Amaya, W.; Mitrani, D.; Pruneri, V.; Mitchell, M.W. Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. Phys. Rev. Lett. 2015, 115, 250403. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. NPJ Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Enne, R.; Hofbauer, M.; Zimmermanna, H. A Monolithic Silicon Quantum Random Number Generator Based on Measurement of Photon Detection Time. IEEE Photonics J. 2015, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Haylock, B.; Peace, D.; Lenzini, F.; Weedbrook, C.; Lobino, M. Multiplexed Quantum Random Number Generation. Quantum 2019, 3, 141. [Google Scholar] [CrossRef]
- Abellán, C.; Amaya, W.; Domenech, D.; Muñoz, P.; Capmany, J.; Longhi, S.; Mitchell, M.W.; Pruneri, V. A quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 2016, 3, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Roger, T.; Paraiso, T.; De Marco, I.; Marangon, D.G.; Yuan, Z.; Shields, A.J. Real-time interferometric quantum random number generation on chip. J. Opt. Soc. Am. B 2019, 36, B137–B142. [Google Scholar] [CrossRef] [Green Version]
- Raffaelli, F.; Ferranti, G.; Mahler, D.H.; Sibson, P.; Kennard, J.E.; Santamato, A.; Sinclair, G.F.; Bonneau, D.; Thompson, M.G.; Matthews, J.C.F. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 2018, 3, 025003. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, H. Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection. J. Opt. Soc. Am. B 2019, 36, B130–B136. [Google Scholar] [CrossRef]
- Raffaelli, F.; Sibson, P.; Kennard, J.E.; Mahler, D.H.; Thompson, M.G.; Matthews, J.C.F. Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip. Opt. Express 2018, 26, 19730–19741. [Google Scholar] [CrossRef]
- Rudé, M.; Abellán, C.; Capdevila, A.; Domenech, D.; Mitchell, M.W.; Amaya, W.; Pruneri, V. Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources. Opt. Express 2018, 26, 31957–31964. [Google Scholar] [CrossRef]
- Runkin, A.; Soto, J.; Nechvatal, J. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Available online: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22.pdf (accessed on 20 January 2020).
- Ortu, A.; Tiranov, A.; Welinski, S.; Fröwis, F.; Gisin, N.; Ferrier, A.; Goldner, P.; Afzelius, M. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 2018, 17, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Tiranov, A.; Ortu, A.; Welinski, S.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M. Spectroscopic study of hyperfine properties in 171Yb3+: Y2SiO5. Phys. Rev. B 2018, 98, 195110. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Hedges, M.P.; Ahlefeldt, R.L.; Bartholomew, J.G.; Beavan, S.E.; Wittig, S.M.; Longdell, J.J.; Sellars, M.J. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 2015, 517, 177–180. [Google Scholar] [CrossRef] [PubMed]
- De Greve, K.; Yu, L.; McMahon, P.L.; Pelc, J.S.; Natarajan, C.M.; Kim, N.Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M.; et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 2012, 491, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Tamaki, K.; Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 2015, 6, 6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buterakos, D.; Barnes, E.; Economou, S.E. Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters. Phys. Rev. X 2017, 7, 041023. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-D.; Zhang, R.; Yin, X.-F.; Liu, L.-Z.; Hu, Y.; Fang, Y.-Q.; Fei, Y.-Y.; Jiang, X.; Zhang, J.; Li, L.; et al. Experimental quantum repeater without quantum memory. Nat. Photonics 2019, 13, 644–648. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, B.-X.; Zhao, C.; Wang, G.; Wang, R.; Wang, H.; Zhou, F.; Nie, J.; Chen, Q.; Zhao, Y.; et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 2018, 26, 6010–6020. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Yin, Z.-Q.; Li, H.-W.; He, D.-Y.; Li, Y.-H.; Zhou, Z.; Song, X.-T.; Li, F.-Y.; Wang, N.; et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 2014, 22, 21739–21756. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.A.; Dynes, J.F.; Choi, I.; Sharpe, A.W.; Dixon, A.R.; Yuan, Z.L.; Penty, R.V.; Shields, A.J. Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber. Phys. Rev. X 2012, 2, 041010. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, B.; Dynes, J.F.; Lucamarini, M.; Sharpe, A.W.; Tam, S.W.-B.; Yuan, Z.; Shields, A.J. Quantum secured gigabit optical access networks. Sci. Rep. 2015, 5, 18121. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council. Directive (EU) 2016/1148 concerning measures for a high common level of security of network and information systems across the Union. Official Journal of the European Union. 2016. Available online: https://eur-lex.europa.eu/eli/dir/2016/1148/oj (accessed on 20 January 2020).
- Bedington, R.; Arrazola, J.M.; Ling, A. Progress in satellite quantum key distribution. NPJ Quantum Inf. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Krithika, S.; Kesavmurthy. T. Securing IOT through Quantum Key Distribution. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 693–696. Available online: https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11410486S419.pdf (accessed on 20 January 2020).
- Lewis, A.M.; Travagnin, M. A Secure Quantum Communications Infrastructure for Europe; Technical Report; Joint Research Centre, JRC116937; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Cai, H.; Long, C.M.; Derose, C.T.; Boynton, N.; Urayama, J.; Camacho, R.; Pomerene, A.; Starbuck, A.L.; Trotter, D.C.; Davids, P.S.; et al. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express 2017, 25, 12282. [Google Scholar] [CrossRef]
- Heindel, T.; Kessler, C.A.; Rau, M.; Schneider, C.; Fürst, M.; Hargart, F.; Schulz, W.-M.; Eichfelder, M.; Roßbach, R.; Nauerth, S.; et al. Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J. Phys. 2012, 14, 083001. [Google Scholar] [CrossRef]
- Comandar, L.C.; Fröhlich, B.; Lucamarini, M.; Patel, K.A.; Sharpe, A.W.; Dynes, J.F.; Yuan, Z.; Penty, R.V.; Shields, A.J. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 2014, 104, 021101. [Google Scholar] [CrossRef] [Green Version]
- Ugajin, K.; Terashima, Y.; Iwakawa, K.; Uchida, A.; Harayama, T.; Yoshimura, K.; Inubushi, M. Real-time fast physical random number generator with a photonic integrated circuit. Opt. Express 2017, 25, 6511. [Google Scholar] [CrossRef] [PubMed]
- Strategic Research Agenda of the European Quantum Flagship. Available online: https://qt.eu/engage/community/working-groups/test-affichage-prioritaire-des-dernieres-publications/ (accessed on 20 January 2020).
- Hemmer, P.R. Rare-earth-based quantum memories. In Proceedings of the Advanced Optical Data Storage, Integrated Optoelectronic Devices, San Josè, CA, USA, 1 July 2003. [Google Scholar]
- Tsukanov, A.V.; Kateev, I.Y. Quantum memory node based on a semiconductor double quantum dot in a laser-controlled optical resonator. Quantum Electron. 2017, 47, 748–756. [Google Scholar] [CrossRef]
- Hu, X.-L.; Cao, Y.; Yu, Z.-W.; Wang, X.-B. Measurement-Device-Independent Quantum Key Distribution over asymmetric channel and unstable channel. Sci. Rep. 2018, 8, 17634. [Google Scholar] [CrossRef]
- Yin, H.-L.; Fu, Y. Measurement-Device-Independent Twin-Field Quantum Key Distribution. Sci. Rep. 2019, 9, 3045. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.; Mueller, P.; Lautier-Gaud, J.; Richdale, K.; Maddox, S.; Heijman, F.; Calarco, T. Report on Industry perspectives on quantum technologies. Available online: http://qcit.committees.comsoc.org/files/2017/05/Industry-perspectives-of-Quantum-Technologies.pdf (accessed on 20 January 2020).
- The UK Market for Quantum Enabling Photon Sources 2018–2022. Available online: https://gandh.com/wp-content/uploads/2018/05/GH-Market-Report-UK-Market-for-Quantum-Enabling-Photon-Sources-2018-2022-Report.pdf (accessed on 20 January 2020).
- ETSI GS QKD 005 v1.1.1 QKD Security Proofs. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/005/01.01.01_60/gs_QKD005v010101p.pdf (accessed on 30 November 2019).
- ETSI GS QKD 008 v1.1.1 QKD Module Security Specification. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/008/01.01.01_60/gs_QKD008v010101p.pdf (accessed on 30 November 2019).
- Innovate UK and the Engineering and Physical Sciences Research Council, A roadmap for quantum technologies in the UK. Available online: https://epsrc.ukri.org/newsevents/pubs/quantumtechroadmap/ (accessed on 20 January 2020).
- National Strategic Overview for Quantum Information Science. Product of The Subcommittee on Quantum Information Science under the Committee on Science of the National Science & Technology Council; EOP: Washington, DC, USA, 2018. [Google Scholar]
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD); Quantum Key Distribution (QKD). Device and Communication Channel Parameters for QKD Deployment. ETSI GS QKD 012 V1.1.1. February 2019. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf (accessed on 20 January 2020).
- Lewis, A.; Kraemer, M.; Travagnin, M. Quantum Technologies: Implications for European Policy; JRC Science for Policy report; JRC101632; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- ITU-T Recommendation. Y.3800: Overview on Networks Supporting Quantum Key Distribution; International Telecommunication Union: Geneva, Switzerland, 2019. [Google Scholar]
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD), Quantum Key Distribution (QKD); Protocol and data format of REST-based key delivery API, ETSI GS QKD 014 V1.1.1. 2 February 2019. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_QKD014v010101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD), Quantum Key Distribution (QKD), Vocabulary, ETSI GR QKD 007 V1.1.1. December 2018. Available online: https://www.etsi.org/deliver/etsi_gr/QKD/001_099/007/01.01.01_60/gr_QKD007v010101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD); Quantum Key Distribution (QKD). Components and Internal Interfaces. ETSI GR QKD 003 V2.1.1. March 2018. Available online: https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_QKD003v020101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD), Quantum Key Distribution (QKD); Component characterization: Characterizing optical components for QKD systems, ETSI GS QKD 011 V1.1.1. May 2016. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/011/01.01.01_60/gs_QKD011v010101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD), Quantum Key Distribution (QKD); Security Proofs, ETSI GS QKD 005 V1.1.1. December 2010. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/005/01.01.01_60/gs_QKD005v010101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution Key for Users (QKD, Quantum Key Distribution (QKD); Application Interface, ETSI GS QKD 004 V1.1.1. December 2010. Available online: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/01.01.01_60/gs_QKD004v010101p.pdf (accessed on 20 January 2020).
- ETSI Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD), Quantum Key Distribution (QKD) Use Cases,” ETSI GS QKD 002 V1.1.1. June 2010. Available online: https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/01.01.01_60/gs_qkd002v010101p.pdf (accessed on 20 January 2020).
Date | State/Company | Distance (km) | Rate/Wavelength (Gbit/s)/nm | Quantum Wavelength (nm) | Code Rate (bit/s) |
---|---|---|---|---|---|
1997 | United Kingdom/ British Telecom | 28 | 1.2/1550 | 1300 | - |
2009 | Sweden/Gotheburg University | 50 | -/1550 | 1550 | 11 |
2012 | United Kingdom/ Cambridge University | 50 | 1/1571–1611 | 1550 | 507 k |
2016 | United Kingdom/ Cambridge University | 50 | 100/1547 | 1529 | 1.2 M |
2017 | China/China Telecom Corporation | 80–117 | 80 × 100/1550 | 1310 | 1.6 k–1 k |
2018 | China/China Unicom | 66 | 3600/1550 | 1310 | 4.5 k |
Devices | Protocols | Medium | Cost | Distance | Application |
---|---|---|---|---|---|
Integrated | DV-QKD CV-QKD | In Air | Low | Short (1–10 m) | Internet of Things, Contactless payment |
Bulky/Integrated Weak pulses | DV-QKD Decosy states MDI Pol. Enc. | In Air | Medium | High (2000–35000+ km) | Space Communications |
Bulky/Integrated Weak pulses | DV-QKD Decoy states MDI Pol. Enc. CV-QKD | In Fiber | Medium | Medium (10–100 km) | Inter Database communications, Short reach meshed networks |
Bulky Cryogenic Temp. | DV-QKD MDI One Time Pad | In Fiber In Air | High | Medium/high (10–1000 km) | Critical infrastructure management |
Bulky/Integrated Weak pulses | DV-QKD CV-QKD | In Fiber | Medium | Medium | Wide area network |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaliere, F.; Prati, E.; Poti, L.; Muhammad, I.; Catuogno, T. Secure Quantum Communication Technologies and Systems: From Labs to Markets. Quantum Rep. 2020, 2, 80-106. https://doi.org/10.3390/quantum2010007
Cavaliere F, Prati E, Poti L, Muhammad I, Catuogno T. Secure Quantum Communication Technologies and Systems: From Labs to Markets. Quantum Reports. 2020; 2(1):80-106. https://doi.org/10.3390/quantum2010007
Chicago/Turabian StyleCavaliere, Fabio, Enrico Prati, Luca Poti, Imran Muhammad, and Tommaso Catuogno. 2020. "Secure Quantum Communication Technologies and Systems: From Labs to Markets" Quantum Reports 2, no. 1: 80-106. https://doi.org/10.3390/quantum2010007
APA StyleCavaliere, F., Prati, E., Poti, L., Muhammad, I., & Catuogno, T. (2020). Secure Quantum Communication Technologies and Systems: From Labs to Markets. Quantum Reports, 2(1), 80-106. https://doi.org/10.3390/quantum2010007