A Systematic Review of Sustainable Ground-Based Last-Mile Delivery of Parcels: Insights from Operations Research
Abstract
1. Introduction
2. Review Methodology
2.1. Research Questions
- RQ1: What are the challenges of employing sustainable innovative ground-based solutions in LMD from an OR perspective?
- RQ2: Which OR methods are deemed most efficient for optimizing ground-based LMD with innovative technologies in terms of sustainability, and what are their essential characteristics?
- RQ3: What are the research directions and study gaps in the sustainable employment of innovative ground-based solutions in LMD in terms of OR challenges?
2.2. Scope of the Work
2.3. Database and Keywords Selection
2.4. Inclusion and Exclusion Criteria
2.5. Screening and Inclusion Flow (PRISMA-Style)
2.6. Classification Scheme
2.7. Conceptual Framework: OR Techniques to Sustainability Goals
3. Electric Vehicles
3.1. Routing and Scheduling Models
3.1.1. Charging Strategies and Dynamics
3.1.2. Variable Vehicle Speed
3.1.3. Charging/Consumption Rate Pattern
3.2. Charging Infrastructure Planning
3.3. Simultaneous Routing and Infrastructure Optimization
3.4. Fleet Management and Optimization
3.5. Balancing Efficiency and Sustainability
4. Autonomous Delivery Robots
4.1. Pure ADR-Based Routing and Scheduling
4.2. Truck-and-Robot Collaborative Delivery
4.2.1. Single-Vehicle Systems
4.2.2. Multi-Vehicle Systems
4.3. Safety and Security Considerations
4.4. Trade-Off Between Efficiency and Sustainability in Autonomous Delivery Robots
5. Parcel Lockers
5.1. Parcel Locker Location Optimization
5.2. Integration of Parcel Lockers with Vehicle Routing Optimization
5.3. Locker Assignment and Scheduling
5.4. Trade-Offs Between Efficiency and Sustainability in Parcel Lockers
6. Pick-Up Points
6.1. Pick-Up Point Location Optimization
6.2. Integration of Pickup Points with Vehicle Routing Optimization
6.3. Trade-Offs Between Efficiency and Sustainability in Pickup Points
7. Crowdsourcing
7.1. Scheduling, Assignment, and Operational Models
7.2. Stochastic and Uncertainty-Based Models
7.3. Crowdshipping Infrastructure and Transshipment
7.4. Parcel Allocation and Network Optimization
7.5. Pricing, Incentives, and Compensation
7.6. Capacity, Quality, and Reliability
7.7. Efficiency vs Sustainability Trade-Off in Crowdshipping Logistics
8. Freight-on-Transit
8.1. Transit-Assisted Two-Tier Urban Delivery
8.2. Integrated Public Transit with Emerging Technologies
8.3. Strategic Design of FOT Networks
9. Combined Innovative Solutions
9.1. Electric Vehicles and Autonomous Delivery Robots
9.2. Parcel Lockers with Electric Vehicles
9.3. Parcel Lockers with Autonomous Delivery Robots
9.4. Pick-Up Points with Autonomous Delivery Robots
9.5. Crowdsourcing with Electric Vehicles
9.6. Crowdsourcing with Parcel Lockers
9.7. Autonomous Delivery Robots and Freight-on-Transit
9.8. Crowdsourcing with Freight-on-Transit
9.9. Crowdsourcing with Parcel Lockers and Freight-on-Transit
10. Comparative Analysis and Practice Insights
Critical Synthesis and Recommendations
11. Discussion and Future Directions
11.1. Introducing Novel Combined Innovative Solutions
11.2. Extending New Sub-Problems and Variants
11.3. Developing State-of-the-Art Methodologies
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 901–920. [Google Scholar] [CrossRef]
- Mannix, G. What Is Last Mile Delivery? 2025. Available online: https://nshift.com/blog/what-is-last-mile-delivery (accessed on 15 September 2025).
- Reports, V. Autonomous Last-Mile Delivery Market Size Is Projected to Reach USD 84.72 Billion by 2030 at CAGR 24.4%, 2021. Available online: https://www.prnewswire.com/news-releases/autonomous-last-mile-delivery-market-size-is-projected-to-reach-usd-84-72-billion-by-2030-at-cagr-24-4--valuates-reports-301211706.html (accessed on 15 September 2025).
- Flashbox.co. 6 Stats Highlighting Importance of Last-Mile Delivery in E-Commerce. 2022. Available online: https://flashbox.co/blog/business/6-stats-highlighting-importance-of-last-mile-delivery-in-e-commerce/ (accessed on 15 September 2025).
- Dell’Amico, M.; Hadjidimitriou, S. Innovative logistics model and containers solution for efficient last mile delivery. Procedia-Soc. Behav. Sci. 2012, 48, 1505–1514. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. Or Spectr. 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Moradi, N.; Wang, C.; Mafakheri, F. Urban air mobility for last-mile transportation: A review. Vehicles 2024, 6, 1383–1414. [Google Scholar] [CrossRef]
- Deloison, T.; Hannon, E.; Huber, A.; Heid, B.; Klink, C.; Sahay, R.; Wolff, C. The Future of the Last-Mile Ecosystem; World Economic Forum: Geneva, Switzerland, 2020. [Google Scholar]
- European Environment Agency. New Registrations of Electric Vehicles in Europe, 2024. Available online: https://www.eea.europa.eu/en/analysis (accessed on 15 September 2025).
- International Energy Agency. Global EV Outlook 2024. Available online: https://iea.blob.core.windows.net/assets/a9e3544b-0b12-4e15-b407-65f5c8ce1b5f/GlobalEVOutlook2024.pdf (accessed on 15 September 2025).
- Accenture.com. The Sustainable Last Mile. Faster. Cheaper. Greener, 2021. Available online: https://www.accenture.com/content/dam/accenture/final/a-com-migration/r3-3/pdf/pdf-148/accenture-sustainable-mile-pov.pdf (accessed on 15 September 2025).
- Mohammad, W.A.; Nazih Diab, Y.; Elomri, A.; Triki, C. Innovative solutions in last mile delivery: Concepts, practices, challenges, and future directions. Supply Chain. Forum Int. J. 2023, 24, 151–169. [Google Scholar] [CrossRef]
- Research, T. The Thriving Market for Electric Vehicles in Last Mile Delivery, 2023. Available online: https://blog.marketresearch.com/the-thriving-market-for-electric-vehicles-in-last-mile-delivery (accessed on 15 September 2025).
- Straight, B. Small, Cute and Nimble: Last-Mile Robots Could Soon Become a Delivery Force, 2022. Available online: https://www.freightwaves.com/news/abi-research-outlook-for-robot-last-mile-delivery-market (accessed on 15 September 2025).
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of parcel lockers’ efficiency as the last mile delivery solution–The results of the research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of last mile logistics research: A systematic review of the literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Bosona, T. Urban freight last mile logistics—Challenges and opportunities to improve sustainability: A literature review. Sustainability 2020, 12, 8769. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The impact of E-Commerce-related last-mile logistics on cities: A systematic literature review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- Taniguchi, E.; Thompson, R.G.; Qureshi, A.G. Modelling city logistics using recent innovative technologies. Transp. Res. Procedia 2020, 46, 3–12. [Google Scholar] [CrossRef]
- Silva, V.; Amaral, A.; Fontes, T. Sustainable urban last-mile logistics: A systematic literature review. Sustainability 2023, 15, 2285. [Google Scholar] [CrossRef]
- Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 345–358. [Google Scholar] [CrossRef]
- Toth, P.; Vigo, D. The Vehicle Routing Problem; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification and review. Comput. Ind. Eng. 2016, 99, 300–313. [Google Scholar] [CrossRef]
- Matai, R.; Singh, S.P.; Mittal, M.L. Traveling salesman problem: An overview of applications, formulations, and solution approaches. Travel. Salesm. Probl. Theory Appl. 2010, 1, 1–25. [Google Scholar]
- Merkert, R.; Bliemer, M.C.; Fayyaz, M. Consumer preferences for innovative and traditional last-mile parcel delivery. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 261–284. [Google Scholar] [CrossRef]
- Ha, N.T.; Akbari, M.; Au, B. Last mile delivery in logistics and supply chain management: A bibliometric analysis and future directions. Benchmarking Int. J. 2023, 30, 1137–1170. [Google Scholar] [CrossRef]
- Kiba-Janiak, M.; Marcinkowski, J.; Jagoda, A.; Skowrońska, A. Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review. Sustain. Cities Soc. 2021, 71, 102984. [Google Scholar] [CrossRef]
- Mucowska, M. Trends of environmentally sustainable solutions of urban last-mile deliveries on the e-commerce market—A literature review. Sustainability 2021, 13, 5894. [Google Scholar] [CrossRef]
- Lauenstein, S.; Schank, C. Design of a sustainable last mile in urban logistics—A systematic literature review. Sustainability 2022, 14, 5501. [Google Scholar] [CrossRef]
- Cano, J.A.; Londoño-Pineda, A.; Rodas, C. Sustainable logistics for e-commerce: A literature review and bibliometric analysis. Sustainability 2022, 14, 12247. [Google Scholar] [CrossRef]
- Bertolini, M.; De Matteis, G.; Nava, A. Sustainable last-mile logistics in economics studies: A systematic literature review. Sustainability 2024, 16, 1205. [Google Scholar] [CrossRef]
- Corti, L. Alternative and Innovative Models of Last-Mile Delivery: A Systematic Literature Review. Master’s Thesis, Politecnico di Milano, Milano, Italy, 2021. Available online: https://www.politesi.polimi.it/retrieve/665b2935-cde8-43b7-b428-22c2e1ccc7b6/2022_09_CORTI.pdf (accessed on 15 September 2025).
- Sorooshian, S.; Khademi Sharifabad, S.; Parsaee, M.; Afshari, A.R. Toward a modern last-mile delivery: Consequences and obstacles of intelligent technology. Appl. Syst. Innov. 2022, 5, 82. [Google Scholar] [CrossRef]
- Lyons, T.; McDonald, N.C. Last-mile strategies for urban freight delivery: A systematic review. Transp. Res. Rec. 2023, 2677, 1141–1156. [Google Scholar] [CrossRef]
- Kaspi, M.; Raviv, T.; Ulmer, M.W. Directions for future research on urban mobility and city logistics. Networks 2022, 79, 253–263. [Google Scholar] [CrossRef]
- Shuaibu, A.S.; Mahmoud, A.S.; Sheltami, T.R. A Review of Last-Mile Delivery Optimization: Strategies, Technologies, Drone Integration, and Future Trends. Drones 2025, 9, 158. [Google Scholar] [CrossRef]
- Maldonado Bonilla, M.A.; Bouzon, M.; Peña-Montoya, C.C. Taxonomy of key practices for a sustainable Last-Mile logistics network in E-Retail: A comprehensive literature review. Clean. Logist. Supply Chain. 2024, 11, 100149. [Google Scholar] [CrossRef]
- Alverhed, E.; Hellgren, S.; Isaksson, H.; Olsson, L.; Palmqvist, H.; Flodén, J. Autonomous last-mile delivery robots: A literature review. Eur. Transp. Res. Rev. 2024, 16, 4. [Google Scholar] [CrossRef]
- Liu, S.; Hassini, E. Freight last mile delivery: A literature review. Transp. Plan. Technol. 2024, 47, 323–369. [Google Scholar] [CrossRef]
- Nogueira, G.P.M.; Silva, S.V.; Hasenclever, L.; Rangel, J.J.d.A. Sustainability in B2C e-commerce: A literature review and future research opportunities in last-mile deliveries. Environ. Dev. Sustain. 2024, 27, 12415–12436. [Google Scholar] [CrossRef]
- Fisk, P. People Planet Profit: How to Embrace Sustainability for Innovation and Business Growth; Kogan Page Publishers: London, UK, 2010. [Google Scholar]
- Molina, A.; Rajagopal. People, Planet, and Profit: Crossing the Triple Bottom Line. In Challenge-Based Learning, Research, and Innovation: Leveraging Industry, Government, and Society; Springer: Berlin/Heidelberg, Germany, 2023; pp. 35–65. [Google Scholar]
- Durach, C.F.; Kembro, J.; Wieland, A. A new paradigm for systematic literature reviews in supply chain management. J. Supply Chain. Manag. 2017, 53, 67–85. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Feng, W.; Figliozzi, M. An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transp. Res. Part Emerg. Technol. 2013, 26, 135–145. [Google Scholar] [CrossRef]
- Go-e.com. How Far Can an Electric Car Go on One Charge? 2023. Available online: https://go-e.com/en/magazine/how-far-can-an-electric-car-go-on-one-charge (accessed on 15 September 2025).
- Erdoğan, S.; Miller-Hooks, E. A green vehicle routing problem. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 100–114. [Google Scholar] [CrossRef]
- Schneider, M.; Stenger, A.; Goeke, D. The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 2014, 48, 500–520. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Dewil, R.; Cattrysse, D. The electric vehicle routing problem and its variations: A literature review. Comput. Ind. Eng. 2021, 161, 107650. [Google Scholar] [CrossRef]
- Erdelić, T.; Carić, T. A survey on the electric vehicle routing problem: Variants and solution approaches. J. Adv. Transp. 2019, 2019, 5075671. [Google Scholar] [CrossRef]
- Qin, H.; Su, X.; Ren, T.; Luo, Z. A review on the electric vehicle routing problems: Variants and algorithms. Front. Eng. Manag. 2021, 8, 370–389. [Google Scholar] [CrossRef]
- Keskin, M.; Çatay, B. Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 2016, 65, 111–127. [Google Scholar] [CrossRef]
- Bruglieri, M.; Mancini, S.; Pezzella, F.; Pisacane, O.; Suraci, S. A three-phase matheuristic for the time-effective electric vehicle routing problem with partial recharges. Electron. Notes Discret. Math. 2017, 58, 95–102. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Shi, J.; Wang, R.; Huang, K. The electric vehicle routing problem with partial recharge and vehicle recycling. Complex Intell. Syst. 2021, 7, 1445–1458. [Google Scholar] [CrossRef]
- Verma, A. Electric vehicle routing problem with time windows, recharging stations and battery swapping stations. EURO J. Transp. Logist. 2018, 7, 415–451. [Google Scholar] [CrossRef]
- Raeesi, R.; Zografos, K.G. The electric vehicle routing problem with time windows and synchronised mobile battery swapping. Transp. Res. Part B Methodol. 2020, 140, 101–129. [Google Scholar] [CrossRef]
- Ahmad, F.; Saad Alam, M.; Saad Alsaidan, I.; Shariff, S.M. Battery swapping station for electric vehicles: Opportunities and challenges. IET Smart Grid 2020, 3, 280–286. [Google Scholar] [CrossRef]
- Yang, J.; Liu, W.; Ma, K.; Yue, Z.; Zhu, A.; Guo, S. An optimal battery allocation model for battery swapping station of electric vehicles. Energy 2023, 272, 127109. [Google Scholar] [CrossRef]
- Duan, Y.r.; Hu, Y.s.; Wu, P. An adaptive large neighborhood search heuristic for the electric vehicle routing problems with time windows and recharging strategies. J. Adv. Transp. 2023, 2023, 1200526. [Google Scholar] [CrossRef]
- Keser, S.B.; Sarıçiçek, İ.; Yazıcı, A. Electric Vehicle Routing With Recharging Stations: Trade-Offs in Last-Mile Delivery. IET Intell. Transp. Syst. 2025, 19, e70052. [Google Scholar] [CrossRef]
- Erdelić, T.; Carić, T. Goods delivery with electric vehicles: Electric vehicle routing optimization with time windows and partial or full recharge. Energies 2022, 15, 285. [Google Scholar] [CrossRef]
- Yu, V.F.; Anh, P.T.; Chen, Y.W. The electric vehicle routing problem with time windows, partial recharges, and parcel lockers. Appl. Sci. 2023, 13, 9190. [Google Scholar] [CrossRef]
- Felipe, Á.; Ortuño, M.T.; Righini, G.; Tirado, G. A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transp. Res. Part E Logist. Transp. Rev. 2014, 71, 111–128. [Google Scholar] [CrossRef]
- Cortes-Murcia, D.L.; Prodhon, C.; Afsar, H.M. The electric vehicle routing problem with time windows, partial recharges and satellite customers. Transp. Res. Part E Logist. Transp. Rev. 2019, 130, 184–206. [Google Scholar] [CrossRef]
- Desaulniers, G.; Errico, F.; Irnich, S.; Schneider, M. Exact algorithms for electric vehicle-routing problems with time windows. Oper. Res. 2016, 64, 1388–1405. [Google Scholar] [CrossRef]
- Abid, M.; Tabaa, M.; Chakir, A.; Hachimi, H. Routing and charging of electric vehicles: Literature review. Energy Rep. 2022, 8, 556–578. [Google Scholar] [CrossRef]
- Liu, Z.; Zuo, X.; Zhou, M.; Guan, W.; Al-Turki, Y. Electric vehicle routing problem with variable vehicle speed and soft time windows for perishable product delivery. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6178–6190. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Kaku, I.; Kang, R.; Pan, X. Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renew. Sustain. Energy Rev. 2021, 151, 111567. [Google Scholar] [CrossRef]
- Montoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J.G. The electric vehicle routing problem with nonlinear charging function. Transp. Res. Part B Methodol. 2017, 103, 87–110. [Google Scholar] [CrossRef]
- Froger, A.; Mendoza, J.E.; Jabali, O.; Laporte, G. Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions. Comput. Oper. Res. 2019, 104, 256–294. [Google Scholar] [CrossRef]
- Kancharla, S.R.; Ramadurai, G. Electric vehicle routing problem with non-linear charging and load-dependent discharging. Expert Syst. Appl. 2020, 160, 113714. [Google Scholar] [CrossRef]
- Kim, Y.J.; Do Chung, B. Energy consumption optimization for the electric vehicle routing problem with state-of-charge-dependent discharging rates. J. Clean. Prod. 2023, 385, 135703. [Google Scholar] [CrossRef]
- Bendiabdellah, Z.; Senouci, S.M.; Feham, M. A hybrid algorithm for planning public charging stations. In Proceedings of the 2014 Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, Canada, 15–19 September 2014; pp. 1–3. [Google Scholar]
- You, P.S.; Hsieh, Y.C. A hybrid heuristic approach to the problem of the location of vehicle charging stations. Comput. Ind. Eng. 2014, 70, 195–204. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Z.; Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy 2022, 247, 123437. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Le, W.; Guo, Z.; He, Z. Data-driven intelligent location of public charging stations for electric vehicles. J. Clean. Prod. 2019, 232, 531–541. [Google Scholar] [CrossRef]
- Awasthi, A.; Venkitusamy, K.; Padmanaban, S.; Selvamuthukumaran, R.; Blaabjerg, F.; Singh, A.K. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy 2017, 133, 70–78. [Google Scholar] [CrossRef]
- Li, J.; Xie, C.; Bao, Z. Optimal en-route charging station locations for electric vehicles: A new modeling perspective and a comparative evaluation of network-based and metanetwork-based approaches. Transp. Res. Part C Emerg. Technol. 2022, 142, 103781. [Google Scholar] [CrossRef]
- He, Y.; Kockelman, K.M.; Perrine, K.A. Optimal locations of US fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 2019, 214, 452–461. [Google Scholar] [CrossRef]
- Arslan, O.; Karaşan, O.E. A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles. Transp. Res. Part B Methodol. 2016, 93, 670–695. [Google Scholar] [CrossRef]
- Lee, C.; Han, J. Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range. Transp. Res. Part B Methodol. 2017, 106, 130–152. [Google Scholar] [CrossRef]
- Dimitriou, P.; Nikolopoulou, A.; Gkiotsalitis, K. An exact approach for the charging station location selection problem in urban freight transport. Oper. Res. 2025, 25, 1–32. [Google Scholar] [CrossRef]
- Xi, X.; Sioshansi, R.; Marano, V. Simulation–optimization model for location of a public electric vehicle charging infrastructure. Transp. Res. Part D Transp. Environ. 2013, 22, 60–69. [Google Scholar] [CrossRef]
- Liu, H.C.; Yang, M.; Zhou, M.; Tian, G. An integrated multi-criteria decision making approach to location planning of electric vehicle charging stations. IEEE Trans. Intell. Transp. Syst. 2018, 20, 362–373. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Ou, Z.; Wang, Q.; Zhou, D.; Ma, J. Robust model of electric vehicle charging station location considering renewable energy and storage equipment. Energy 2022, 238, 121713. [Google Scholar] [CrossRef]
- Kong, W.; Luo, Y.; Feng, G.; Li, K.; Peng, H. Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid. Energy 2019, 186, 115826. [Google Scholar] [CrossRef]
- Ahmad, F.; Iqbal, A.; Ashraf, I.; Marzband, M.; Khan, I. Optimal location of electric vehicle charging station and its impact on distribution network: A review. Energy Rep. 2022, 8, 2314–2333. [Google Scholar] [CrossRef]
- Bilal, M.; Rizwan, M. Electric vehicles in a smart grid: A comprehensive survey on optimal location of charging station. IET Smart Grid 2020, 3, 267–279. [Google Scholar] [CrossRef]
- Kizhakkan, A.R.; Rathore, A.K.; Awasthi, A. Review of electric vehicle charging station location planning. In Proceedings of the 2019 IEEE Transportation Electrification Conference (ITEC-India), Bengaluru, India, 17–19 December 2019; pp. 1–5. [Google Scholar]
- Kchaou-Boujelben, M. Charging station location problem: A comprehensive review on models and solution approaches. Transp. Res. Part C Emerg. Technol. 2021, 132, 103376. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55, 217–232. [Google Scholar] [CrossRef]
- Hof, J.; Schneider, M.; Goeke, D. Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transp. Res. Part B Methodol. 2017, 97, 102–112. [Google Scholar] [CrossRef]
- Affi, M.; Derbel, H.; Jarboui, B.; Siarry, P. A Skewed General Variable Neighborhood Search Approach for Solving the Battery Swap Station Location-Routing Problem with Capacitated Electric Vehicles. In Green Transportation and New Advances in Vehicle Routing Problems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 75–89. [Google Scholar]
- Chen, Y.; Li, D.; Zhang, Z.; Wahab, M.; Jiang, Y. Solving the battery swap station location-routing problem with a mixed fleet of electric and conventional vehicles using a heuristic branch-and-price algorithm with an adaptive selection scheme. Expert Syst. Appl. 2021, 186, 115683. [Google Scholar] [CrossRef]
- Schiffer, M.; Walther, G. Strategic planning of electric logistics fleet networks: A robust location-routing approach. Omega 2018, 80, 31–42. [Google Scholar] [CrossRef]
- Wang, C.; Liu, R.; Su, Y.; Zhang, X. Accelerating two-phase multiobjective evolutionary algorithm for electric location-routing problems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9121–9136. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.; Zhang, W. A novel location-routing problem in electric vehicle transportation with stochastic demands. J. Clean. Prod. 2019, 221, 567–581. [Google Scholar] [CrossRef]
- Aghalari, A.; Salamah, D.E.; Marino, C.; Marufuzzaman, M. Electric vehicles fast charger location-routing problem under ambient temperature. Ann. Oper. Res. 2023, 324, 721–759. [Google Scholar] [CrossRef]
- Hulagu, S.; Celikoglu, H.B. Electric vehicle location routing problem with vehicle motion dynamics-based energy consumption and recovery. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10275–10286. [Google Scholar] [CrossRef]
- Sadati, M.E.H.; Akbari, V.; Çatay, B. Electric vehicle routing problem with flexible deliveries. Int. J. Prod. Res. 2022, 60, 4268–4294. [Google Scholar] [CrossRef]
- Moradi, N.; Sadati, I.; Çatay, B. Last mile delivery routing problem using autonomous electric vehicles. Comput. Ind. Eng. 2023, 184, 109552. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, W.; Wolfson, O. Electric vehicle routing problem. Transp. Res. Procedia 2016, 12, 508–521. [Google Scholar] [CrossRef]
- Çalık, H.; Oulamara, A.; Prodhon, C.; Salhi, S. The electric location-routing problem with heterogeneous fleet: Formulation and Benders decomposition approach. Comput. Oper. Res. 2021, 131, 105251. [Google Scholar] [CrossRef]
- Park, H.; Jin, S. Electric vehicle routing problem with heterogeneous vehicles and partial charge. Int. J. Ind. Eng. Manag. 2020, 11, 215–225. [Google Scholar]
- Cai, W.; Zhang, Y.; Huang, F.; Ma, C. Delivery routing problem of pure electric vehicle with multi-objective pick-up and delivery integration. PLoS One 2023, 18, e0281131. [Google Scholar] [CrossRef]
- Gholami, K.; Karimi, S.; Anvari-Moghaddam, A. Multi-objective stochastic planning of electric vehicle charging stations in unbalanced distribution networks supported by smart photovoltaic inverters. Sustain. Cities Soc. 2022, 84, 104029. [Google Scholar] [CrossRef]
- Kapoor, A.; Gangwar, P.; Sharma, A.; Mohapatra, A. Multi-objective framework for optimal scheduling of electric vehicles. In Proceedings of the 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India, 17–19 December 2020; pp. 1–6. [Google Scholar]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Multi-objective scheduling of electric vehicles in smart distribution system. Energy Convers. Manag. 2014, 79, 43–53. [Google Scholar] [CrossRef]
- Sarker, A.; Shen, H.; Stankovic, J.A. MORP: Data-driven multi-objective route planning and optimization for electric vehicles. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–35. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, Z. Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows. Neural Comput. Appl. 2022, 34, 7325–7348. [Google Scholar] [CrossRef]
- SAE.org. SAE Levels of Driving Automation Refined for Clarity and International Audience, 2021. Available online: https://www.sae.org/blog/sae-j3016-update (accessed on 15 September 2025).
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Figliozzi, M.A. Carbon emissions reductions in last mile and grocery deliveries utilizing air and ground autonomous vehicles. Transp. Res. Part D Transp. Environ. 2020, 85, 102443. [Google Scholar] [CrossRef]
- Srinivas, S.; Ramachandiran, S.; Rajendran, S. Autonomous robot-driven deliveries: A review of recent developments and future directions. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102834. [Google Scholar] [CrossRef]
- Sonneberg, M.O.; Leyerer, M.; Kleinschmidt, A.; Knigge, F.; Breitner, M.H. Autonomous unmanned ground vehicles for urban logistics: Optimization of last mile delivery operations. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, HI, USA, 8–11 January 2019. [Google Scholar]
- Kronmueller, M.; Fielbaum, A.; Alonso-Mora, J. On-demand grocery delivery from multiple local stores with autonomous robots. In Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Cambridge, UK, 4–5 November 2021; pp. 29–37. [Google Scholar]
- Wang, J.; Pan, J.; Zheng, L.; Tan, X. A Systematic Space-Time Route Planning Approach Coordinated With Task Assignment for Autonomous Delivery Vehicles Fleet. IEEE Access 2023, 11, 79370–79383. [Google Scholar] [CrossRef]
- Gnegel, F.; Schaudt, S.; Clausen, U.; Fügenschuh, A. A Graph-Refinement Algorithm to Minimize Squared Delivery Delays Using Parcel Robots. Mathematics 2024, 12, 3201. [Google Scholar] [CrossRef]
- Jeong, J.; Moon, I. Dynamic pickup and delivery problem for autonomous delivery robots in an airport terminal. Comput. Ind. Eng. 2024, 196, 110476. [Google Scholar] [CrossRef]
- Yang, H.; Du, Y.; Le, T.V.; Chow, J.Y.J. Analytical model for large-scale design of sidewalk delivery robot systems with bounded makespans. Transp. Res. Part C Emerg. Technol. 2025, 171, 104978. [Google Scholar] [CrossRef]
- Boysen, N.; Schwerdfeger, S.; Weidinger, F. Scheduling last-mile deliveries with truck-based autonomous robots. Eur. J. Oper. Res. 2018, 271, 1085–1099. [Google Scholar] [CrossRef]
- Simoni, M.D.; Kutanoglu, E.; Claudel, C.G. Optimization and analysis of a robot-assisted last mile delivery system. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102049. [Google Scholar] [CrossRef]
- Jennings, D.; Figliozzi, M. Study of sidewalk autonomous delivery robots and their potential impacts on freight efficiency and travel. Transp. Res. Rec. 2019, 2673, 317–326. [Google Scholar] [CrossRef]
- Reed, S.; Campbell, A.M.; Thomas, B.W. The value of autonomous vehicles for last-mile deliveries in urban environments. Manag. Sci. 2022, 68, 280–299. [Google Scholar] [CrossRef]
- Reed, S.; Campbell, A.M.; Thomas, B.W. Impact of autonomous vehicle assisted last-mile delivery in urban to rural settings. Transp. Sci. 2022, 56, 1530–1548. [Google Scholar] [CrossRef]
- Ostermeier, M.; Heimfarth, A.; Hübner, A. Cost-optimal truck-and-robot routing for last-mile delivery. Networks 2022, 79, 364–389. [Google Scholar] [CrossRef]
- Alfandari, L.; Ljubić, I.; Da Silva, M.D.M. A tailored Benders decomposition approach for last-mile delivery with autonomous robots. Eur. J. Oper. Res. 2022, 299, 510–525. [Google Scholar] [CrossRef]
- Heimfarth, A.; Ostermeier, M.; Hübner, A. A mixed truck and robot delivery approach for the daily supply of customers. Eur. J. Oper. Res. 2022, 303, 401–421. [Google Scholar] [CrossRef]
- Chen, C.; Demir, E.; Huang, Y.; Qiu, R. The adoption of self-driving delivery robots in last mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 146, 102214. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Demir, E.; Huang, Y. An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. Eur. J. Oper. Res. 2021, 294, 1164–1180. [Google Scholar] [CrossRef]
- Ostermeier, M.; Heimfarth, A.; Hübner, A. The multi-vehicle truck-and-robot routing problem for last-mile delivery. Eur. J. Oper. Res. 2023, 310, 680–697. [Google Scholar] [CrossRef]
- Scherr, Y.O.; Saavedra, B.A.N.; Hewitt, M.; Mattfeld, D.C. Service network design with mixed autonomous fleets. Transp. Res. Part E Logist. Transp. Rev. 2019, 124, 40–55. [Google Scholar] [CrossRef]
- Klar, R.; Arvidsson, N.; Rudmark, D. Towards a new last-mile delivery system: Cost and energy-optimized robot and van allocation. Transp. Res. Part E Logist. Transp. Rev. 2025; in press. [Google Scholar]
- Wei, Y.; Wang, Y.; Hu, X. The two-echelon truck–unmanned ground vehicle routing problem with time-dependent travel times. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103954. [Google Scholar] [CrossRef]
- Moradi, N.; Kayvanfar, V.; Baldacci, R. Autonomous Delivery Vehicles in Two-Echelon Routing for Sustainable Last-Mile Logistics. IFAC-PapersOnLine 2025, 59, 2598–2603. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.; Tang, J.; Gaudiot, J.L.; Zhang, L.; Kong, Q. Autonomous last-mile delivery vehicles in complex traffic environments. Computer 2020, 53, 26–35. [Google Scholar] [CrossRef]
- Bentley, P.; Lim, S.L.; Arcaini, P.; Ishikawa, F. Using a variational autoencoder to learn valid search spaces of safely monitored autonomous robots for last-mile delivery. In Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA, 15–19 July 2023; pp. 1303–1311. [Google Scholar]
- Han, J.J.; Seo, S.; Kim, H.J. Autonomous delivery robots on the rise: How can I cut carbon footprint for restaurant food deliveries? Int. J. Hosp. Manag. 2024, 121, 103804. [Google Scholar] [CrossRef]
- Wu, M.; Lin, A.S.Q.; Yuen, K.F. The effects of motivated consumer innovativeness on consumer acceptance of autonomous delivery robots. J. Retail. Consum. Serv. 2024, 81, 104030. [Google Scholar] [CrossRef]
- Choi, M.; Lee, S. Integration of Autonomous Robots in Environmental and Urban Planning. In Intelligent Moving Cities: Technological Leap and Social Integration of Autonomous Mobile Robots; Springer: Singapore, 2025; pp. 83–98. [Google Scholar] [CrossRef]
- Shin, H.; Choi, J.; Oh, C. Delivering the Future: Understanding User Perceptions of Delivery Robots. Proc. ACM Hum.-Comput. Interact. 2024, 8, 1–24. [Google Scholar] [CrossRef]
- Yu, X.; Hoggenmüller, M.; Tran, T.T.M.; Wang, Y.; Tomitsch, M. Understanding the Interaction between Delivery Robots and Other Road and Sidewalk Users: A Study of User-generated Online Videos. ACM Trans. Hum.-Robot. Interact. 2024, 13, 59. [Google Scholar] [CrossRef]
- Santamaria-Navarro, A.; Hernández, S.; Herrero, F.; López, A.; del Pino, I.; Rodríguez-Linares, N.; Fernández, C.; Baldó, A.; Lemardelé, C.; Garrell, A.; et al. Toward the Deployment of an Autonomous Last-Mile Delivery Robot in Urban Areas: The Ona Prototype Platform. IEEE Robot. Autom. Mag. 2024, 32, 26–39. [Google Scholar] [CrossRef]
- Jung, S.; Lee, S.; Jun, W.; Oh, T. Performance Analysis of Motion Planning for Outdoor Autonomous Delivery Robot. In Proceedings of the 2024 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2024. [Google Scholar] [CrossRef]
- Patel, S. Human Interaction with Autonomous Delivery Robots: Navigating the Intersection of Psychological Acceptance and Societal Integration. In Proceedings of the Human Factors in Design, Engineering, and Computing; AHFE Open Access: Honolulu, HI, USA, 2024. [Google Scholar] [CrossRef]
- Xu, F.; Liu, D.; Zhou, C.; Hu, J. Robotic Delivery Worker in the Dark: Assessment of Perceived Safety from Sidewalk Autonomous Delivery Robots’ Lighting Colors. Appl. Sci. 2024, 14, 5983. [Google Scholar] [CrossRef]
- Kaiser, R.; De Benedetto, S.; Planing, P.; Müller, P. What Will the Delivery Robots Bring Us Tomorrow? Int. J. Consum. Stud. 2024, 48, e13093. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, M.; Chen, X.; Zhao, C.; Guo, J.; Zhang, J.; Yue, Y.; Ma, Y. Towards Safe and Efficient Last-Mile Delivery: A Multi-Modal Socially Aware Navigation Framework for Autonomous Robots on Pedestrian-Crowded Sidewalks. In Proceedings of the 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM), Hangzhou, China, 8–11 August 2024; pp. 392–398. [Google Scholar] [CrossRef]
- Ayyıldız, E.; Erdogan, M. Addressing the challenges of using autonomous robots for last-mile delivery. Comput. Ind. Eng. 2024, 190, 110096. [Google Scholar] [CrossRef]
- Koh, L.Y.; Xia, Z.; Yuen, K.F. Consumer acceptance of the autonomous robot in last-mile delivery: A combined perspective of resource-matching, perceived risk and value theories. Transp. Res. Part A Policy Pract. 2024, 182, 104008. [Google Scholar] [CrossRef]
- Maas, J.; Kosch, M.; Straube, F. Integration of Autonomous Delivery Solutions in Urban Logistics—Practical Insights from a Pilot Project. In New Players in Mobility; Proff, H., Ed.; Springer Gabler: Wiesbaden, Germany, 2025. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Keoleian, G.A.; Kim, H.C.; De Kleine, R.; Wallington, T.J.; Kemp, N.J. Life cycle greenhouse gas emissions for last-mile parcel delivery by automated vehicles and robots. Environ. Sci. Technol. 2021, 55, 11360–11367. [Google Scholar] [CrossRef]
- Garus, A.; Christidis, P.; Mourtzouchou, A.; Duboz, L.; Ciuffo, B. Unravelling the last-mile conundrum: A comparative study of autonomous delivery robots, delivery bicycles, and light commercial vehicles in 14 varied European landscapes. Sustain. Cities Soc. 2024, 108, 105490. [Google Scholar] [CrossRef]
- Lemardelé, C.; Estrada, M.Á.; Pagès, L. Uncertainty analysis of autonomous delivery robot operations for last-mile logistics in European cities. J. Intell. Transp. Syst. 2024, 29, 469–490. [Google Scholar] [CrossRef]
- Poeting, M.; Schaudt, S.; Clausen, U. A comprehensive case study in last-mile delivery concepts for parcel robots. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; pp. 1779–1788. [Google Scholar]
- Zhao, J.; Hu, H.; Han, Y.; Cai, Y. A review of unmanned vehicle distribution optimization models and algorithms. J. Traffic Transp. Eng. Engl. Ed. 2023, 10, 548–559. [Google Scholar] [CrossRef]
- Plank, M.; Lemardelé, C.; Assmann, T.; Zug, S. Ready for robots? Assessment of autonomous delivery robot operative accessibility in German cities. J. Urban Mobil. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Engesser, V.; Rombaut, E.; Vanhaverbeke, L.; Lebeau, P. Autonomous delivery solutions for last-mile logistics operations: A literature review and research agenda. Sustainability 2023, 15, 2774. [Google Scholar] [CrossRef]
- Zemanek, J.E., Jr.; Kros, J.F. Risk-mitigation strategies for autonomous delivery vehicles in the last mile: A comprehensive overview of the current state and future potential of autonomous delivery technologies in the supply chain. J. Compr. Bus. Adm. Res. 2025, 2. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, L.; Ruan, J.; Zhang, J. How to Choose “Last Mile” Delivery Modes for E-Fulfillment. Math. Probl. Eng. 2014, 2014, 417129. [Google Scholar] [CrossRef]
- Carotenuto, P.; Ceccato, R.; Gastaldi, M.; Giordani, S.; Rossi, R.; Salvatore, A. Comparing home and parcel lockers’ delivery systems: A math-heuristic approach. Transp. Res. Procedia 2022, 62, 91–98. [Google Scholar] [CrossRef]
- Deutsch, Y.; Golany, B. A parcel locker network as a solution to the logistics last mile problem. Int. J. Prod. Res. 2018, 56, 251–261. [Google Scholar] [CrossRef]
- Rabe, M.; Gonzalez-Feliu, J.; Chicaiza-Vaca, J.; Tordecilla, R.D. Simulation-optimization approach for multi-period facility location problems with forecasted and random demands in a last-mile logistics application. Algorithms 2021, 14, 41. [Google Scholar] [CrossRef]
- Sawik, B.; Serrano-Hernandez, A.; Muro, A.; Faulin, J. Multi-criteria simulation-optimization analysis of usage of automated parcel lockers: A practical approach. Mathematics 2022, 10, 4423. [Google Scholar] [CrossRef]
- Luo, R.; Ji, S.; Ji, Y. An active-learning Pareto evolutionary algorithm for parcel locker network design considering accessibility of customers. Comput. Oper. Res. 2022, 141, 105677. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; He, X.; Zhang, H.; Xu, G. Location optimization for community smart parcel lockers based on bilevel programming. J. Adv. Transp. 2023, 2023, 1998188. [Google Scholar] [CrossRef]
- Kahr, M. Determining locations and layouts for parcel lockers to support supply chain viability at the last mile. Omega 2022, 113, 102721. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Optimizing the changing locations of mobile parcel lockers in last-mile distribution. Eur. J. Oper. Res. 2020, 285, 1077–1094. [Google Scholar] [CrossRef]
- Mancini, S.; Gansterer, M.; Triki, C. Locker box location planning under uncertainty in demand and capacity availability. Omega 2023, 120, 102910. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Hu, C.; Du, J. Parcel locker location problem with selectable volume sizes and heterogeneous customers in the last mile delivery. Transp. Lett. 2024, 16, 1140–1154. [Google Scholar] [CrossRef]
- Orenstein, I.; Raviv, T.; Sadan, E. Flexible parcel delivery to automated parcel lockers: Models, solution methods and analysis. EURO J. Transp. Logist. 2019, 8, 683–711. [Google Scholar] [CrossRef]
- Sitek, P.; Wikarek, J. Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): Model and implementation using hybrid approach. Ann. Oper. Res. 2019, 273, 257–277. [Google Scholar] [CrossRef]
- Sitek, P.; Wikarek, J.; Rutczyńska-Wdowiak, K.; Bocewicz, G.; Banaszak, Z. Optimization of capacitated vehicle routing problem with alternative delivery, pick-up and time windows: A modified hybrid approach. Neurocomputing 2021, 423, 670–678. [Google Scholar] [CrossRef]
- Jiang, L.; Dhiaf, M.; Dong, J.; Liang, C.; Zhao, S. A traveling salesman problem with time windows for the last mile delivery in online shopping. Int. J. Prod. Res. 2020, 58, 5077–5088. [Google Scholar] [CrossRef]
- Buzzega, G.; Novellani, S. Last mile deliveries with lockers: Formulations and algorithms. Soft Comput. 2023, 27, 12843–12861. [Google Scholar] [CrossRef]
- Enthoven, D.L.; Jargalsaikhan, B.; Roodbergen, K.J.; Uit het Broek, M.A.; Schrotenboer, A.H. The two-echelon vehicle routing problem with covering options: City logistics with cargo bikes and parcel lockers. Comput. Oper. Res. 2020, 118, 104919. [Google Scholar] [CrossRef]
- Redi, A.P.; Jewpanya, P.; Kurniawan, A.C.; Persada, S.F.; Nadlifatin, R.; Dewi, O.A.C. A simulated annealing algorithm for solving two-echelon vehicle routing problem with locker facilities. Algorithms 2020, 13, 218. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Jodiawan, P.; Schrotenboer, A.H.; Hou, M.L. The two-echelon vehicle routing problem with time windows, intermediate facilities, and occasional drivers. Expert Syst. Appl. 2023, 234, 120945. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Susanto, H.; Jodiawan, P.; Ho, T.W.; Lin, S.W.; Huang, Y.T. A simulated annealing algorithm for the vehicle routing problem with parcel lockers. IEEE Access 2022, 10, 20764–20782. [Google Scholar] [CrossRef]
- Dumez, D.; Lehuédé, F.; Péton, O. A large neighborhood search approach to the vehicle routing problem with delivery options. Transp. Res. Part B Methodol. 2021, 144, 103–132. [Google Scholar] [CrossRef]
- Grabenschweiger, J.; Doerner, K.F.; Hartl, R.F.; Savelsbergh, M.W. The vehicle routing problem with heterogeneous locker boxes. Cent. Eur. J. Oper. Res. 2021, 29, 113–142. [Google Scholar] [CrossRef]
- Tilk, C.; Olkis, K.; Irnich, S. The last-mile vehicle routing problem with delivery options. Or Spectr. 2021, 43, 877–904. [Google Scholar] [CrossRef]
- Janinhoff, L.; Klein, R.; Scholz, D. Multitrip vehicle routing with delivery options: A data-driven application to the parcel industry. OR Spectr. 2024, 46, 241–294. [Google Scholar] [CrossRef]
- Oliveira, W.J.P.; dos Santos, A.G. Last Mile Delivery with Lockers: Formulation and Heuristic. In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) (1), Online Streaming, 5–7 May 2020; pp. 460–467. [Google Scholar]
- Oliveira, B.; Lima, D.; Pessoa, A.; Roboredo, M. Exact methods for two vehicle routing problems with lockers in last-mile delivery. OR Spectr. 2025, 1–31. [Google Scholar] [CrossRef]
- Oliveira, B.; Pessoa, A.; Roboredo, M. Hybrid iterated local search algorithm for the vehicle routing problem with lockers. J. Heuristics 2025, 31, 22. [Google Scholar] [CrossRef]
- Mancini, S.; Gansterer, M. Vehicle routing with private and shared delivery locations. Comput. Oper. Res. 2021, 133, 105361. [Google Scholar] [CrossRef]
- Yu, V.F.; Susanto, H.; Yeh, Y.H.; Lin, S.W.; Huang, Y.T. The vehicle routing problem with simultaneous pickup and delivery and parcel lockers. Mathematics 2022, 10, 920. [Google Scholar] [CrossRef]
- Ensafian, H.; Andaryan, A.Z.; Bell, M.G.; Geers, D.G.; Kilby, P.; Li, J. Cost-optimal deployment of autonomous mobile lockers co-operating with couriers for simultaneous pickup and delivery operations. Transp. Res. Part C Emerg. Technol. 2023, 146, 103958. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Q.; Escribano-Macias, J.; Feng, Y.; Candela, E.; Angeloudis, P. Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach. Transp. Res. Part E Logist. Transp. Rev. 2023, 177, 103234. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, M.; Chen, Y. A scheduling strategy of mobile parcel lockers for the last mile delivery problem. Promet-Traffic Transp. 2020, 32, 875–885. [Google Scholar] [CrossRef]
- Chen, J.; Li, R.; Ma, J.; An, Q. Stationary versus mobile parcel lockers: Which self-service technology moves the consumers in the last mile of urban areas? Travel Behav. Soc. 2024, 35, 100742. [Google Scholar] [CrossRef]
- Zurel, Ö.; Van Hoyweghen, L.; Braes, S.; Seghers, A. Parcel lockers, an answer to the pressure on the last mile delivery? In New Business and Regulatory Strategies in the Postal Sector; Springer: Berlin/Heidelberg, Germany, 2019; pp. 299–312. [Google Scholar]
- Dong, B.; Hovi, I.B.; Pinchasik, D.R. Analysis of service efficiency of parcel locker in last-mile delivery: A case study in Norway. Transp. Res. Procedia 2023, 69, 918–925. [Google Scholar] [CrossRef]
- Klein, P.; Popp, B. Last-mile delivery methods in E-commerce: Does perceived sustainability matter for consumer acceptance and usage? Sustainability 2022, 14, 16437. [Google Scholar] [CrossRef]
- Hohenecker, N.; Hauger, G.; Braith, J.; Eitler, S.; Prandtstetter, M.; Schodl, R.; Seragiotto, C.; Steinbauer, M. alBOX: White Label Parcel Lockers as Sustainable Solution for Last Mile Delivery. In Proceedings of the REAL CORP 2021, 26th International Conference on Urban Development, Regional Planning and Information Society, Vienna, Austria, 7–10 September 2021; pp. 41–51. [Google Scholar]
- Bonomi, V.; Mansini, R.; Zanotti, R. Last Mile Delivery with Parcel Lockers: Evaluating the environmental impact of eco-conscious consumer behavior. IFAC-PapersOnLine 2022, 55, 72–77. [Google Scholar] [CrossRef]
- Gutenschwager, K.; Rabe, M.; Chicaiza-Vaca, J. Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile. Algorithms 2024, 17, 4. [Google Scholar] [CrossRef]
- Peppel, M.; Spinler, S.; Winkenbach, M. Integrating mobile parcel lockers into last-mile delivery networks: An operational design for home delivery, stationary, and mobile parcel lockers. Int. J. Phys. Distrib. Logist. Manag. 2024, 54, 418–447. [Google Scholar] [CrossRef]
- Rohmer, S.; Gendron, B. A Guide to Parcel Lockers in Last Mile Distribution: Highlighting Challenges and Opportunities from an OR Perspective; Cirrelt Montreal: Montréal, QC, Canada, 2020; Volume 11. [Google Scholar]
- Akdoğan, K.; Özceylan, E. Parcel lockers location and routing problem: A bibliometric, descriptive, and content analysis of existing studies. Int. J. Ind. Eng. 2022, 29. [Google Scholar]
- Tsai, J.F.; Ngo, H.N.; Che, Z.H. Last-mile delivery during COVID-19: A systematic review of parcel locker adoption and consumer experience. Acta Psychol. 2024, 249, 104462. [Google Scholar] [CrossRef] [PubMed]
- Morganti, E.; Seidel, S.; Blanquart, C.; Dablanc, L.; Lenz, B. The impact of e-commerce on final deliveries: Alternative parcel delivery services in France and Germany. Transp. Res. Procedia 2014, 4, 178–190. [Google Scholar] [CrossRef]
- Russo, A.; Tesoriere, G.; Al-Rashid, M.A.; Campisi, T. Pick-up point location optimization using a two-level multi-objective approach: The enna case study. In Proceedings of the International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 309–322. [Google Scholar]
- Baia, B.S. Relevant attributes for pick-up points in last-mile logistics. RAM-Rev. Adm. Mackenzie 2025, 26. [Google Scholar] [CrossRef]
- Saad, S.; Bahadori, R. Sustainability evaluation of last mile food delivery: Pickup point using lockers versus home delivery. In Proceedings of the International Food Operations and Processing Simulation Workshop, FoodOPS 2018; CAL-TEK Srl: Rende, Italy, 2018; pp. 37–42. [Google Scholar]
- Galiullina, A.; Mutlu, N.R.; Kinable, J.; Van Woensel, T. Demand Steering in a Last-Mile Delivery Problem with Home and Pickup Point Delivery Options. Transp. Sci. 2024, 58, 454–473. [Google Scholar] [CrossRef]
- Brown, J.R.; Guiffrida, A.L. Carbon emissions comparison of last mile delivery versus customer pickup. Int. J. Logist. Res. Appl. 2014, 17, 503–521. [Google Scholar] [CrossRef]
- Beckers, J.; Verhetsel, A. The sustainability of the urban layer of e-commerce deliveries: The Belgian collection and delivery point networks. Eur. Plan. Stud. 2021, 29, 2300–2319. [Google Scholar] [CrossRef]
- Masteguim, R.; Cunha, C.B. An optimization-based approach to evaluate the operational and environmental impacts of pick-up points on E-commerce urban last-mile distribution: A case study in São Paulo, Brazil. Sustainability 2022, 14, 8521. [Google Scholar] [CrossRef]
- Cardenas, I.D.; Dewulf, W.; Beckers, J.; Smet, C.; Vanelslander, T. The e-commerce parcel delivery market and the implications of home B2C deliveries vs pick-up points. Int. J. Transp. Econ. Riv. Internazionale Econ. Dei Trasp. 2017, 44, 235–256. [Google Scholar]
- Neto, L.G.; Vieira, J.G.V. An investigation of consumer intention to use pick-up point services for last-mile distribution in a developing country. J. Retail. Consum. Serv. 2023, 74, 103425. [Google Scholar] [CrossRef]
- Carbone, V.; Rouquet, A.; Roussat, C. The rise of crowd logistics: A new way to co-create logistics value. J. Bus. Logist. 2017, 38, 238–252. [Google Scholar] [CrossRef]
- Archetti, C.; Savelsbergh, M.; Speranza, M.G. The vehicle routing problem with occasional drivers. Eur. J. Oper. Res. 2016, 254, 472–480. [Google Scholar] [CrossRef]
- Macrina, G.; Di Puglia Pugliese, L.; Guerriero, F.; Laganà, D. The vehicle routing problem with occasional drivers and time windows. In Proceedings of the International Conference on Optimization and Decision Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 577–587. [Google Scholar]
- Pugliese, L.D.P.; Ferone, D.; Festa, P.; Guerriero, F.; Macrina, G. Combining variable neighborhood search and machine learning to solve the vehicle routing problem with crowd-shipping. Optim. Lett. 2023, 17, 1981–2003. [Google Scholar] [CrossRef]
- Soto Setzke, D.; Pflügler, C.; Schreieck, M.; Fröhlich, S.; Wiesche, M.; Krcmar, H. Matching drivers and transportation requests in crowdsourced delivery systems. In Proceedings of the AMCIS 2017 Proceedings, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Mancini, S.; Gansterer, M. Bundle generation for last-mile delivery with occasional drivers. Omega 2022, 108, 102582. [Google Scholar] [CrossRef]
- Pugliese, L.D.P.; Ferone, D.; Macrina, G.; Festa, P.; Guerriero, F. The crowd-shipping with penalty cost function and uncertain travel times. Omega 2023, 115, 102776. [Google Scholar] [CrossRef]
- Ahamed, T.; Zou, B.; Farazi, N.P.; Tulabandhula, T. Deep reinforcement learning for crowdsourced urban delivery. Transp. Res. Part B Methodol. 2021, 152, 227–257. [Google Scholar] [CrossRef]
- Behrendt, A.; Savelsbergh, M.; Wang, H. A prescriptive machine learning method for courier scheduling on crowdsourced delivery platforms. Transp. Sci. 2023, 57, 889–907. [Google Scholar] [CrossRef]
- Ulmer, M.W.; Savelsbergh, M. Workforce scheduling in the era of crowdsourced delivery. Transp. Sci. 2020, 54, 1113–1133. [Google Scholar] [CrossRef]
- Kafle, N.; Zou, B.; Lin, J. Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery. Transp. Res. Part B Methodol. 2017, 99, 62–82. [Google Scholar] [CrossRef]
- Tao, Y.; Zhuo, H.; Lai, X. The pickup and delivery problem with multiple depots and dynamic occasional drivers in crowdshipping delivery. Comput. Ind. Eng. 2023, 182, 109440. [Google Scholar] [CrossRef]
- Wu, X.; Hu, D.; Ma, B.; Jiang, R. The two echelon open vehicle routing problem: Optimization of crowdshipping based parcel delivery. KSCE J. Civ. Eng. 2022, 26, 4073–4085. [Google Scholar] [CrossRef]
- Arslan, A.M.; Agatz, N.; Kroon, L.; Zuidwijk, R. Crowdsourced delivery—A dynamic pickup and delivery problem with ad hoc drivers. Transp. Sci. 2019, 53, 222–235. [Google Scholar] [CrossRef]
- Dayarian, I.; Savelsbergh, M. Crowdshipping and same-day delivery: Employing in-store customers to deliver online orders. Prod. Oper. Manag. 2020, 29, 2153–2174. [Google Scholar] [CrossRef]
- Sampaio, A.; Savelsbergh, M.; Veelenturf, L.P.; Van Woensel, T. Delivery systems with crowd-sourced drivers: A pickup and delivery problem with transfers. Networks 2020, 76, 232–255. [Google Scholar] [CrossRef]
- Voigt, S.; Kuhn, H. Crowdsourced logistics: The pickup and delivery problem with transshipments and occasional drivers. Networks 2022, 79, 403–426. [Google Scholar] [CrossRef]
- Gdowska, K.; Viana, A.; Pedroso, J.P. Stochastic last-mile delivery with crowdshipping. Transp. Res. Procedia 2018, 30, 90–100. [Google Scholar] [CrossRef]
- Mousavi, K.; Bodur, M.; Roorda, M.J. Stochastic last-mile delivery with crowd-shipping and mobile depots. Transp. Sci. 2022, 56, 612–630. [Google Scholar] [CrossRef]
- Chen, S.; Miao, H.; Guo, Z.; Yang, L.; Yao, C.; Yang, Z. A truthful combinatorial reverse auction mechanism for crowdshipping. IEEE Internet Things J. 2023, 10, 18225–18236. [Google Scholar] [CrossRef]
- Yıldız, B. Express package routing problem with occasional couriers. Transp. Res. Part C Emerg. Technol. 2021, 123, 102994. [Google Scholar] [CrossRef]
- Tapia, R.J.; Kourounioti, I.; Thoen, S.; de Bok, M.; Tavasszy, L. A disaggregate model of passenger-freight matching in crowdshipping services. Transp. Res. Part A Policy Pract. 2023, 169, 103587. [Google Scholar] [CrossRef]
- Macrina, G.; Pugliese, L.D.P.; Guerriero, F.; Laporte, G. Crowd-shipping with time windows and transshipment nodes. Comput. Oper. Res. 2020, 113, 104806. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Jodiawan, P.; Redi, A.P. Crowd-shipping problem with time windows, transshipment nodes, and delivery options. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102545. [Google Scholar]
- Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 279–293. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Qin, H. Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery. Transp. Res. Part B Methodol. 2023, 171, 111–135. [Google Scholar] [CrossRef]
- Stokkink, P.; Geroliminis, N. A continuum approximation approach to the depot location problem in a crowd-shipping system. Transp. Res. Part E Logist. Transp. Rev. 2023, 176, 103207. [Google Scholar] [CrossRef]
- Behrend, M.; Meisel, F. The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd? Transp. Res. Part B Methodol. 2018, 111, 227–243. [Google Scholar] [CrossRef]
- Fadda, E.; Perboli, G.; Tadei, R. Customized multi-period stochastic assignment problem for social engagement and opportunistic IoT. Comput. Oper. Res. 2018, 93, 41–50. [Google Scholar] [CrossRef]
- Boysen, N.; Emde, S.; Schwerdfeger, S. Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand. Eur. J. Oper. Res. 2022, 296, 539–556. [Google Scholar] [CrossRef]
- Fatehi, S.; Wagner, M.R. Crowdsourcing last-mile deliveries. Manuf. Serv. Oper. Manag. 2022, 24, 791–809. [Google Scholar] [CrossRef]
- He, S.; Dai, Y.; Ma, Z.J. To offer or not to offer? The optimal value-insured strategy for crowdsourced delivery platforms. Transp. Res. Part E Logist. Transp. Rev. 2023, 173, 103091. [Google Scholar] [CrossRef]
- Li, X.; Tan, A.J.H.; Wang, X.; Yuen, K.F. Investigating gig workers’ commitment to crowdsourced logistics platforms: Fair employment and social exchange perspectives. Technol. Soc. 2023, 74, 102311. [Google Scholar] [CrossRef]
- Tsai, P.W.; Xue, X.; Zhang, J. Trajectory feature extraction and multi-criteria k nearest neighbour based job-to-crowd matching for the crowdshipping last mile delivery. IET Control Theory Appl. 2023, 17, 2304–2312. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Z.; Li, F.; Xu, Z.; Chen, Z. Stable matching for crowdsourcing last-mile delivery. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8174–8187. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Gu, F.; Guo, J.; Wu, X. Two-sided matching and strategic selection on freight resource sharing platforms. Phys. A Stat. Mech. Its Appl. 2020, 559, 125014. [Google Scholar] [CrossRef]
- Hou, S.; Gao, J.; Wang, C. Optimization framework for crowd-sourced delivery services with the consideration of shippers’ acceptance uncertainties. IEEE Trans. Intell. Transp. Syst. 2022, 24, 684–693. [Google Scholar] [CrossRef]
- Le, T.V.; Ukkusuri, S.V.; Xue, J.; Van Woensel, T. Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102209. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Y.; Yan, N.; Zhou, W. Optimal staffing for online-to-offline on-demand delivery systems: In-house or crowd-sourcing drivers? Asia-Pac. J. Oper. Res. 2021, 38, 2050037. [Google Scholar] [CrossRef]
- Yildiz, B.; Savelsbergh, M. Service and capacity planning in crowd-sourced delivery. Transp. Res. Part C Emerg. Technol. 2019, 100, 177–199. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Merckx, J.; Macharis, C. Crowd logistics: An opportunity for more sustainable urban freight transport? Eur. Transp. Res. Rev. 2017, 9, 39. [Google Scholar] [CrossRef]
- Devari, A.; Nikolaev, A.G.; He, Q. Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 105–122. [Google Scholar] [CrossRef]
- Gatta, V.; Marcucci, E.; Nigro, M.; Patella, S.M.; Serafini, S. Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts. Sustainability 2019, 11, 145. [Google Scholar] [CrossRef]
- Qi, W.; Li, L.; Liu, S.; Shen, Z.J.M. Shared mobility for last-mile delivery: Design, operational prescriptions, and environmental impact. Manuf. Serv. Oper. Manag. 2018, 20, 737–751. [Google Scholar] [CrossRef]
- Ghaderi, H.; Tsai, P.W.; Zhang, L.; Moayedikia, A. An integrated crowdshipping framework for green last mile delivery. Sustain. Cities Soc. 2022, 78, 103552. [Google Scholar] [CrossRef]
- Alnaggar, A.; Gzara, F.; Bookbinder, J.H. Crowdsourced delivery: A review of platforms and academic literature. Omega 2021, 98, 102139. [Google Scholar] [CrossRef]
- Le, T.V.; Stathopoulos, A.; Van Woensel, T.; Ukkusuri, S.V. Supply, demand, operations, and management of crowd-shipping services: A review and empirical evidence. Transp. Res. Part C Emerg. Technol. 2019, 103, 83–103. [Google Scholar] [CrossRef]
- Samad, T.A.; Ganguly, K.K.; Das, D. Towards a framework for development of crowd logistics: Paving the way for sustainable logistics. Comput. Ind. Eng. 2023, 176, 109008. [Google Scholar] [CrossRef]
- Bathke, H.; Münch, C. From occasional to active crowdshippers: The significance of couriers’ characteristics. IEEE Trans. Eng. Manag. 2023, 71, 12094–12109. [Google Scholar] [CrossRef]
- Mousavi, K.S.M. Strategic, Tactical, and Operational Decision-Making in Crowd-Shipping; University of Toronto (Canada): Toronto, ON, Canada, 2022. [Google Scholar]
- Yuen, K.F.; Koh, L.Y.; Wong, Y.Q.; Wang, X. Sustainable crowdsourced delivery: A study of technological, health, value, and trust antecedents of consumer loyalty. J. Clean. Prod. 2023, 405, 137010. [Google Scholar] [CrossRef]
- Castillo, V.E.; Bell, J.E.; Rose, W.J.; Rodrigues, A.M. Crowdsourcing last mile delivery: Strategic implications and future research directions. J. Bus. Logist. 2018, 39, 7–25. [Google Scholar] [CrossRef]
- Pourrahmani, E.; Jaller, M. Crowdshipping in last mile deliveries: Operational challenges and research opportunities. Socio-Econ. Plan. Sci. 2021, 78, 101063. [Google Scholar] [CrossRef]
- Mohri, S.S.; Ghaderi, H.; Nassir, N.; Thompson, R.G. Crowdshipping for sustainable urban logistics: A systematic review of the literature. Transp. Res. Part E Logist. Transp. Rev. 2023, 178, 103289. [Google Scholar] [CrossRef]
- Azcuy, I.; Agatz, N.; Giesen, R. Designing integrated urban delivery systems using public transport. Transp. Res. Part E Logist. Transp. Rev. 2021, 156, 102525. [Google Scholar] [CrossRef]
- Juvigny, C.; Delle Donne, D.; Alfandari, L. A Genetic Approach to the Operational Freight-on-Transit Problem. In Proceedings of the Evolutionary Computation in Combinatorial Optimization (EvoCOP 2025); Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2025; Volume 15610, pp. 116–132. [Google Scholar] [CrossRef]
- Bruzzone, F.; Cavallaro, F.; Nocera, S. Environmental and energy performance of integrated passenger–freight transport. Transp. Res. Interdiscip. Perspect. 2023, 19, 100958. [Google Scholar] [CrossRef]
- Kızıl, K.U.; Yıldız, B. Public transport-based crowd-shipping with backup transfers. Transp. Sci. 2023, 57, 174–196. [Google Scholar] [CrossRef]
- Delle Donne, D.; Alfandari, L.; Archetti, C.; Ljubić, I. Freight-on-Transit for urban last-mile deliveries: A strategic planning approach. Transp. Res. Part B Methodol. 2023, 169, 53–81. [Google Scholar] [CrossRef]
- Cheng, R.; Jiang, Y.; Nielsen, O.A. Integrated people-and-goods transportation systems: From a literature review to a general framework for future research. Transp. Rev. 2023, 43, 997–1020. [Google Scholar] [CrossRef]
- Tundulyasaree, K.; Martin, L.; Lieshout, R.v.; Woensel, T.V. Improving Service Quality of an Urban Rail Transit Line by Integrating Passenger and Freight Train Transportation. In Combinatorial Optimization and Applications: A Tribute to Bernard Gendron; Springer: Berlin/Heidelberg, Germany, 2024; pp. 449–478. [Google Scholar]
- Yang, X.; Nie, X.; Luo, H.; Huang, G.Q. Integrating parcel delivery schedules with public transport networks in urban co-modality systems. Comput. Oper. Res. 2024, 167, 106650. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F. Modular vehicle-based transit system for passenger and freight co-modal transportation. Transp. Res. Part C Emerg. Technol. 2024, 160, 104545. [Google Scholar] [CrossRef]
- El Amrani, A.M.; Fri, M.; Benmoussa, O.; Rouky, N. The integration of urban freight in public transportation: A systematic literature review. Sustainability 2024, 16, 5286. [Google Scholar] [CrossRef]
- Derse, O.; Van Woensel, T. Integrated people and freight transportation: A literature review. Future Transp. 2024, 4, 1142–1160. [Google Scholar] [CrossRef]
- Yu, S.; Puchinger, J.; Sun, S. Van-based robot hybrid pickup and delivery routing problem. Eur. J. Oper. Res. 2022, 298, 894–914. [Google Scholar] [CrossRef]
- Moradi, N.; Mafakheri, F.; Wang, C.; Baldacci, R. Robot-aided electric vehicle routing problem with lockers and prime customers prioritization. Eur. J. Oper. Res. 2025, 328, 1018–1035. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, L.; Thompson, R.G.; Ghaderi, H. A parcel network flow approach for joint delivery networks using parcel lockers. Int. J. Prod. Res. 2021, 59, 2090–2115. [Google Scholar] [CrossRef]
- Vukićević, M.; Ratli, M.; Rivenq, A.; Zrikem, M. Covering delivery problem with electric vehicle and parcel lockers: Variable neighborhood search approach. Comput. Oper. Res. 2023, 157, 106263. [Google Scholar] [CrossRef]
- Song, L.; Wang, B.; Bian, Q.; Shao, L. Environmental benefits of using new last-mile solutions and using electric vehicles in China. Transp. Res. Rec. 2024, 2678, 473–489. [Google Scholar] [CrossRef]
- Boroujeni, N.M.; Moradi, N.; Jamalzadeh, S.; Boroujeni, N.M. Last-mile delivery optimization: Leveraging electric vehicles and parcel lockers for prime customer service. Comput. Ind. Eng. 2025, 203, 110991. [Google Scholar] [CrossRef]
- Yu, V.F.; Anh, P.T. The electric vehicle routing problem with time windows, partial recharges, and covering locations. Int. Trans. Oper. Res. 2025. [Google Scholar] [CrossRef]
- Schnieder, M.; Hinde, C.; West, A. Land efficient mobility: Evaluation of autonomous last mile delivery concepts in London. Int. J. Environ. Res. Public Health 2022, 19, 10290. [Google Scholar] [CrossRef]
- Moradi, N.; Mafakheri, F.; Wang, C. Covering routing problem with robots and parcel lockers: A sustainable last-mile delivery approach. In Proceedings of the IISE Annual Conference, Montreal, QC, Canada, 18–21 May 2024; Institute of Industrial and Systems Engineers (IISE): Norcross, GA, USA, 2024; pp. 1–6. [Google Scholar]
- Ulmer, M.W.; Streng, S. Same-day delivery with pickup stations and autonomous vehicles. Comput. Oper. Res. 2019, 108, 1–19. [Google Scholar] [CrossRef]
- He, Y.; Csiszár, C. Model for crowdsourced parcel delivery embedded into mobility as a service based on autonomous electric vehicles. Energies 2021, 14, 3042. [Google Scholar] [CrossRef]
- Dos Santos, A.G.; Viana, A.; Pedroso, J.P. 2-echelon lastmile delivery with lockers and occasional couriers. Transp. Res. Part E Logist. Transp. Rev. 2022, 162, 102714. [Google Scholar] [CrossRef]
- Ghaderi, H.; Zhang, L.; Tsai, P.W.; Woo, J. Crowdsourced last-mile delivery with parcel lockers. Int. J. Prod. Econ. 2022, 251, 108549. [Google Scholar] [CrossRef]
- Sawik, B. Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping. Logistics 2024, 8, 52. [Google Scholar] [CrossRef]
- Zhang, M.; Cheah, L.; Courcoubetis, C. Exploring the potential impact of crowdshipping using public transport in Singapore. Transp. Res. Rec. 2023, 2677, 173–189. [Google Scholar] [CrossRef]
- De Maio, A.; Ghiani, G.; Laganà, D.; Manni, E. Sustainable last-mile distribution with autonomous delivery robots and public transportation. Transp. Res. Part C Emerg. Technol. 2024, 163, 104615. [Google Scholar] [CrossRef]
- Ghiani, G.; Guerriero, E.; Manni, E.; Pareo, D. Combining autonomous delivery robots and traditional vehicles with public transportation infrastructure in last-mile distribution. Comput. Ind. Eng. 2025, 203, 111001. [Google Scholar] [CrossRef]
- Zingler, F. A conceptual framework for integrating urban freight deliveries with public transportation and crowdsourcing. Transp. Res. Interdiscip. Perspect. 2025, 82, 1293–1312. [Google Scholar] [CrossRef]
- Yang, X.; Wu, W.; Huang, G.Q. A crowdsourced co-modality transportation system integrating passenger and freight. Adv. Eng. Inform. 2023, 58, 102142. [Google Scholar] [CrossRef]
- Gajda, M.; Gallay, O.; Mansini, R.; Ranza, F. Optimizing last-mile delivery through crowdshipping on public transportation networks. Transp. Res. Part C Emerg. Technol. 2025, 179, 105250. [Google Scholar] [CrossRef]
- Mohri, S.S.; Nassir, N.; Lavieri, P.S.; Thompson, R.G. Modeling package delivery acceptance in crowdshipping systems by public transportation passengers: A latent class approach. Travel Behav. Soc. 2024, 35, 100716. [Google Scholar] [CrossRef]
- Serafini, S.; Nigro, M.; Gatta, V.; Marcucci, E. Sustainable crowdshipping using public transport: A case study evaluation in Rome. Transp. Res. Procedia 2018, 30, 101–110. [Google Scholar] [CrossRef]
- Gatta, V.; Marcucci, E.; Nigro, M.; Serafini, S. Sustainable urban freight transport adopting public transport-based crowdshipping for B2C deliveries. Eur. Transp. Res. Rev. 2019, 11, 13. [Google Scholar] [CrossRef]
- Zhang, M.; Cheah, L. Prioritizing Outlier Parcels for Public Transport-Based Crowdshipping in Urban Logistics. Transp. Res. Rec. 2024, 2678, 601–612. [Google Scholar] [CrossRef]
- Fessler, A.; Thorhauge, M.; Mabit, S.; Haustein, S. A public transport-based crowdshipping concept as a sustainable last-mile solution: Assessing user preferences with a stated choice experiment. Transp. Res. Part A Policy Pract. 2022, 158, 210–223. [Google Scholar] [CrossRef]
- Mohri, S.S.; Nassir, N.; Thompson, R.G.; Lavieri, P.S. Public transportation-based crowd-shipping initiatives: Are users willing to participate? Why not? Transp. Res. Part A Policy Pract. 2024, 182, 104019. [Google Scholar] [CrossRef]
- Gobbi, A.; Mansini, R.; Moreschini, L.; Ranza, F. Optimal Locker Placement for Budget-Constrained Crowdshipping in Public Transport Networks. IFAC-PapersOnLine 2025, 59, 3041–3046. [Google Scholar] [CrossRef]
- Cheng, R.; Fessler, A.; Nielsen, O.A.; Larsen, A.; Jiang, Y. Assessing the potential impacts of public transport-based crowdshipping: A case study in a central district of Copenhagen. Front. Eng. Manag. 2024, 11, 697–709. [Google Scholar] [CrossRef]
- Wyrowski, A.; Boysen, N.; Briskorn, D.; Schwerdfeger, S. Public transport crowdshipping: Moving shipments among parcel lockers located at public transport stations. OR Spectr. 2024, 46, 873–907. [Google Scholar] [CrossRef]
- Maleki, M.; Rayburg, S.; Glackin, S. Demographic and Operational Factors in Public Transport-Based Parcel Locker Crowdshipping: A Mixed-Methods Analysis. Logistics 2025, 9, 55. [Google Scholar] [CrossRef]
- Karakikes, I.; Kepaptsoglou, K.; Milioti, C.; Stamos, I. Assessing the Impacts of Crowdshipping Using Public Transport: A Case Study in a Middle-Sized Greek City. Future Transp. 2022, 2, 55–83. [Google Scholar] [CrossRef]
- Mohri, S.S.; Nassir, N.; Thompson, R.G.; Lavieri, P.S.; Ghaderi, H. Crowd-shipping systems with public transport passengers: Operational planning. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103916. [Google Scholar] [CrossRef]



| Decision Layer | Technique Class | Primary Goals | Modeling Feature | Typical Metrics |
|---|---|---|---|---|
| Strategic (siting, sizing) | Exact MILP/Benders | Cost, equity | Network design with capacity/access; policy transparency | Total cost; coverage share; average walking distance |
| Strategic-tactical (EV infrastructure + routing) | Decomposition (CG, Lagrange) | Cost, emissions | Location-routing split; resource-constrained paths | Cost; kWh; CO2; solver bounds/gaps |
| Tactical (routing/scheduling) | Matheuristics and metaheuristics | Cost, emissions, service | Energy/battery, time windows, synchronization neighborhoods | Cost; on-time rate; energy; runtime vs. instance size |
| Operational (real-time dispatch) | Rolling-horizon + learning | Service, resilience | Prediction (arrival times, acceptance), receding horizon control | On-time %; average delay; recovery time; re-optimization count |
| Cross-cutting (uncertainty) | Stochastic/robust optimization | Resilience, service | Scenario recourse; uncertainty sets; risk measures | Lateness; worst-case regret; service reliability |
| Evaluation (trade-offs) | Multi-objective (e.g., Non-dominated Sorting Genetic Algorithm (NSGA-II), -constraint) | Cost, emissions, service balance | Pareto set construction; decision support | Pareto spread; dominance counts; knee points |
| Dimension | Example Metrics (Units) | Typical OR Levers (Objective/Constraints) | Data/Proxies |
|---|---|---|---|
| Planet | CO2e per parcel; energy (kWh/parcel); NOx, PM (g/km); noise (dB); congestion proxy (empty vehicle kilometers traveled, curb dwell minutes) | Minimize emissions/energy; cap local pollutants/noise; penalize curb dwell; -constraint on CO2e | Telematics traces; emission factors; noise maps; traffic data |
| People | Access equity (population within 400–800 m of PL/PP); average walking distance; service reliability (failed deliveries, on-time %); safety proxies (conflicts per 100k stops) | Maximize coverage/equity; bound walking distance; penalize failures/lateness; soft/hard time windows | Census/land-use; locker/PP usage; carrier KPIs; curb/incident logs |
| Profit | Total generalized cost; unit cost (USD/parcel); asset utilization (%); on-time service (as viability) | Minimize cost; capacity/crew constraints; service-level constraints; fleet sizing | Cost ledgers; depot/crew schedules; demand forecasts |
| Resilience (cross-cutting) | Lateness; worst-case regret; recovery time; feasibility under perturbations | Two-stage stochastic or robust optimization; rolling-horizon recourse; buffer/slack constraints | Delay distributions; demand uncertainty; scenario sets |
| Setting | Typical Model Structure | Benefits in Practice | Drawbacks/Limits | Scalability/Runtime |
|---|---|---|---|---|
| EVs | MILP with energy and charging; time windows | Explicit feasibility respecting the SoC, time; interpretable costs and constraints; suitable for sensitivity and policy testing | Exact methods degrade with tight time windows and nonlinear charging; parameter uncertainty increases solve times | Exact: small/medium; metaheuristics: large (hundreds-thousands stops) with near-optimal solutions in minutes/hours |
| ADRs | MILP with synchronization, launch/retrieval, coupled capacity | Captures timing and resource coupling; supports what-if on robot counts and speeds | Synchronization explodes state space; exact methods scale poorly; requires reliable travel/handling times | Matheuristics/decomposition: medium instances; hybrid heuristics: larger with good gaps |
| PLs | Bi-level or joint location-routing MILP | Fewer failed deliveries; consolidates stops; amenable to strategic-operational splits | Coupling of siting and tours is hard; stochastic demand and compartment sizes complicate feasibility | Decomposition or matheuristics handle city-scale; exact is moderate scale if decoupled |
| PPs | Facility location + routing MILP | Leverages existing retail; simple policies possible | Limited hours; human factors; less secure than lockers | Similarly to PL; heuristics scale well; exact limited by time windows |
| CS | Stochastic/rolling-horizon assignment + routing | Fast surge capacity; good in peak and sparse areas; platform data enables learning | Acceptance uncertainty; reliability; pricing incentives couple to routing | Myopic + learning or CG with heuristics scale; full stochastic exact is small |
| FOT | Network design + time-expanded MILP; two-stage modeling | Uses existing capacity; emissions savings; robust for dense corridors | Timetable synchronization; station handling; passenger interference | Decomposition + CG scale; exact monoliths limited |
| Combined solutions | Multi-layer MILP with synchronization, location-routing, assignment; two-stage modeling; set-partitioning/CG; rolling-horizon control | Synergies from pooling and flexible hand-offs; shifts curb time to lockers; robust under demand spikes; supports multi-objective trade-offs (cost-energy-service) | Strongly coupled decisions (siting-routing-synchronization) inflate state space; more data/parameters to calibrate; higher orchestration complexity | City-scale via matheuristics + decomposition (ALNS/VNS + Benders/CG) heuristics; exact feasible only for small pilot networks |
| Setting | Geography/Scale | Design/Constraints | Reported Outcomes (tag) | Source(s) |
|---|---|---|---|---|
| EV fleet adoption (retail delivery) | U.S., multi-city | Retail EV deployment; depot-charger alignment; partial charging in operations | Emissions reduction potential; curb/charging constraints binding in practice [obs.]/[proj.] | [13] |
| ADR + modular lockers (routing/siting) | London, U.K. | Road-based autonomous lockers vs. fixed lockers; weekly modular adjustment | Modular lockers outperform fixed under moderate-high demand; fewer failed deliveries [proj.]; limited trials [pilot] | [285] |
| PL network expansion | Norway, national rollout | Multi-period siting with real demand; environmental accounting | Lower delivery externalities; improved access and service reliability [obs.]/[proj.] | [194] |
| Collection/Delivery Points (PP/CDP) | Belgium, nationwide | Accessibility/coverage analysis; walking-distance equity | Large coverage gaps without multi-carrier CDPs; policy guidance [obs.] | [209] |
| Crowd-tasking using commuter flows | Singapore/Beijing, city-scale datasets | Network min-cost flow; citizens deliver along commutes | High scalability/coverage using existing mobility; strong matching rates [obs.]/[proj.] | [237] |
| CS with relay points | Xi’an, China | 2-echelon truck→relay→crowd; nested GA selection/routing | ∼14% total cost and ∼26% VMT reductions vs. truck-only [proj.] | [225] |
| FOT (people+goods) | Rome, Italy | Integration with mass transit; safety/emissions accounting | Substantial projected drops in emissions and accidents [proj.] | [255] |
| White-label lockers (alBOX pilot) | Austria, urban + rural pilots | Multi-carrier lockers; user acceptance and behavior | Operational feasibility; usage patterns; social acceptance insights [pilot]/[obs.] | [196] |
| ADR (street+sidewalk) | Barcelona, ES (dense urban core; mixed sidewalk/road) | Prototype build + city pilots; perception/navigation for street-sidewalk operation; safety + teleop fallback; operational envelope definition; curb/sidewalk integration with municipal infra | Reported lessons on infrastructure interfaces, HRI/etiquette, and regulatory coordination; demonstrates practical feasibility and integration considerations for ADR deployments [pilot] | [143] |
| ADR (sidewalk navigation) | Singapore (NTU campus sidewalks) | Husky platform + RGB-D; Nanyang Sidewalk dataset; social-force-guided intent prediction; state-lattice planner with etiquette cost | Shows how human-space etiquette can be encoded in local planning for ADRs, informing micro-level constraints for OR models [obs.] | [148] |
| ADR (city pilot) | European city (pilot) | Pilot design; stakeholder alignment; regulatory coordination; infra readiness; change management | Actionable recommendations for scoping use cases and city coordination; complements optimization with deployment guidance [pilot] | [151] |
| PT-based CS + PL | Rome (city) | Feasibility and willingness analyses; APLs near PT stations; leverages spare capacity | Viable under PL siting and participation assumptions [proj.] | [299] |
| PT-based CS + PL | Rome (city) | Stated-preference demand/supply; compensation and detour constraints | Participation conditions and policy levers identified [proj.] | [300] |
| PT-based CS | Singapore (city) | System-level scenario analysis; participation and station-capacity constraints | Lower carrier CO2 and operating effort; capacity/uptake are bottlenecks [proj.] | [292] |
| PT-based CS + PL (outlier parcels) | Singapore (city) | LOF-based parcel prioritization; locker siting; carrier CVRP evaluation | Up to 11% parcels diverted with 31 lockers; ∼20% cost cut; CO2 down [proj.] | [301] |
| PT-based CS | Copenhagen (city) | Stated-choice (); mixed-logit acceptance model; extra-time/compensation constraints | Acceptance elasticities and target segments for design [proj.] | [302] |
| PT-based CS + PL + carrier VRP | Copenhagen (district) | Budgeted PL siting at PT; downstream carrier VRP; availability constraints | Fewer vans, reduced VKT and driver hours; crowdshipper availability is binding [proj.] | [305] |
| PT-based CS | Sydney (metro) | Latent-class acceptance model (); incentive/weight/detour constraints | Segment-specific participation propensities to embed in OR models [proj.] | [298] |
| PT-based CS + PL | Volos, Greece (city) | City-scale microsimulation; locker siting near PT; participation-rate scenarios | Impact reductions feasible; strong sensitivity to participation and siting [proj.] | [308] |
| Parcels on fixed-route buses (FOT) | Zrenjanin, Serbia (city) | Stakeholder-informed energy/environmental simulation; policy/energy-mix scenarios | Improved energy and environmental performance vs. truck-only [proj.] | [269] |
| Mobile vs. stationary PLs vs. home | EU/General (synthetic) | Operational design; dwell-time/coverage policies; emissions-cost trade-offs | MPLs outperform stationary/home under suitable policies; CO2/cost-benefits [proj.] | [199] |
| PT-CS via locker-to-locker handovers | Subway network (synthetic) | Multi-hop parcel relays at PT lockers; decomposition heuristic; delay robustness | Handover-enabled plans beat single-carrier paths; higher robustness [proj.] | [306] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, N.; Mafakheri, F.; Wang, C. A Systematic Review of Sustainable Ground-Based Last-Mile Delivery of Parcels: Insights from Operations Research. Vehicles 2025, 7, 121. https://doi.org/10.3390/vehicles7040121
Moradi N, Mafakheri F, Wang C. A Systematic Review of Sustainable Ground-Based Last-Mile Delivery of Parcels: Insights from Operations Research. Vehicles. 2025; 7(4):121. https://doi.org/10.3390/vehicles7040121
Chicago/Turabian StyleMoradi, Nima, Fereshteh Mafakheri, and Chun Wang. 2025. "A Systematic Review of Sustainable Ground-Based Last-Mile Delivery of Parcels: Insights from Operations Research" Vehicles 7, no. 4: 121. https://doi.org/10.3390/vehicles7040121
APA StyleMoradi, N., Mafakheri, F., & Wang, C. (2025). A Systematic Review of Sustainable Ground-Based Last-Mile Delivery of Parcels: Insights from Operations Research. Vehicles, 7(4), 121. https://doi.org/10.3390/vehicles7040121

