Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities
Abstract
:1. Introduction
2. General Benefits of Milk Fat
Type of Saturated Fatty Acids | Benefits | References |
---|---|---|
Short-chain fatty acid |
| [14] [15] [16,17] |
Medium-chain fatty acid |
| [18,19] |
Long-chain fatty acid |
| [6] |
Branched-chain fatty acid |
| [6] |
Odd-chain fatty acid |
| [20,21,22] |
3. A Change in Consumer Preference towards Whole Milk Could Provide More Opportunities to Develop Value-Added Dairy Fat-Rich Products
4. Scope for the Development of Value-Added Dairy Fat-Rich Products
5. Potential Incorporation of Probiotics and Other Functional Ingredients in the Dairy Fat-Rich Matrices
5.1. Whipped Cream
5.1.1. Polysaccharides
5.1.2. Protein–Polysaccharide
5.1.3. Others
5.2. Butter
5.3. Recombined Dairy Cream (RDC)
5.4. Sour Cream
6. Benefits of Incorporating Probiotics
6.1. Defining Probiotics
6.2. Health and Therapeutic Benefits of Probiotics
6.3. Consumption of Probiotics through Food Products and Supplements
6.4. Challenges in Incorporating Probiotics in Food Matrices
6.4.1. Impact of Microbiological Factors Such as Strain Selection, rate, and Proportion of Inoculation on the Probiotic Viability
6.4.2. Impact of Product Manufacturing, Processing Parameters and Storage Conditions on the Viability of Probiotics
6.4.3. Impact of Food Composition on the Probiotic’s Viability
7. Encapsulation as a Promising Technique to Address the Probiotic Viability Challenge
7.1. Production of Microcapsules Using Extrusion, Emulsion, and Spray-Drying
7.2. Common Encapsulating Materials for the Probiotic’s Entrapment
7.2.1. Polysaccharides
7.2.2. Proteins
Animal-Derived Proteins
Plant Proteins
Milk-Derived Proteins
Whey Proteins and Its Derivatives as Potential Encapsulating Agents
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, K.J. Milk fats as ingredients. Int. J. Dairy Technol. 2001, 54, 56–60. [Google Scholar] [CrossRef]
- Huang, Z.; Stipkovits, L.; Zheng, H.; Serventi, L.; Brennan, C.S. Bovine milk fats and their replacers in baked goods: A review. Foods 2019, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Rønholt, S.; Mortensen, K.; Knudsen, J.C. The effective factors on the structure of butter and other milk fat-based products. Compr. Rev. Food Sci. Food Saf. 2013, 12, 468–482. [Google Scholar] [CrossRef]
- Qu, X.; Hu, H.; Wang, Y.; Cao, C.; Li, H.; Liu, X.; Yu, J. Proteomics analysis of milk fat globule membrane enriched materials derived from by-products during different stages of milk-fat processing. LWT 2019, 116, 108531. [Google Scholar] [CrossRef]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Legrand, P.; Rioux, V. Specific roles of saturated fatty acids: Beyond epidemiological data. Eur. J. Lipid Sci. Technol. 2015, 117, 1489–1499. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M.; Childs, L. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef]
- Ran-Ressler, R.R.; Devapatla, S.; Lawrence, P.; Brenna, J.T. Branched Chain Fatty Acids Are Constituents of the Normal Healthy Newborn Gastrointestinal Tract. 2008. Available online: www.lipidlibrary.co.uk (accessed on 4 October 2023).
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of Branched-Chain Fatty Acids on Fatty Acid Biosynthesis of Human Breast Cancer Cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef]
- Churruca, I.; Fernández-Quintela, A.; Portillo, M.P. Conjugated linoleic acid isomers: Differences in metabolism and biological effects. BioFactors 2009, 35, 105–111. [Google Scholar] [CrossRef]
- Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Hatayama, H.; Iwashita, J.; Kuwajima, A.; Abe, T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem. Biophys. Res. Commun. 2007, 356, 599–603. [Google Scholar] [CrossRef]
- Jung, T.H.; Park, J.H.; Jeon, W.M.; Han, K.S. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr. Res. Pract. 2015, 9, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, D.; Borowicki, A.; Habermann, N.; Hofmann, T.; Klenow, S.; Miene, C.; Munjal, U.; Stein, K.; Glei, M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. —Rev. Mutat. Res. 2009, 682, 39–53. [Google Scholar] [CrossRef]
- Mumme, K.; Stonehouse, W. Effects of medium-chain triglycerides on weight loss and body composition: A meta-analysis of randomized controlled trials. J. Acad. Nutr. Diet. 2015, 115, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Nagao, K.; Yanagita, T. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res. 2010, 61, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Pfeuffer, M.; Jaudszus, A. Pentadecanoic and heptadecanoic acids: Multifaceted odd-chain fatty acids. In Advances in Nutrition; American Society for Nutrition: Boston, MA, USA, 2016; Volume 7, pp. 730–734. [Google Scholar] [CrossRef]
- Risérus, U.; Marklund, M. Milk fat biomarkers and cardiometabolic disease. Curr. Opin. Lipidol. 2017, 28, 46–51. [Google Scholar] [CrossRef]
- Yakoob, M.Y.; Shi, P.; Willett, W.C.; Rexrode, K.M.; Campos, H.; Orav, E.J.; Hu, F.B.; Mozaffarian, D. Circulating Biomarkers of Dairy Fat and Risk of Incident Diabetes Mellitus Among Men and Women in the United States in Two Large Prospective Cohorts. Circulation 2016, 133, 1645–1654. [Google Scholar] [CrossRef]
- Kvist, K.; Dam Laursen, A.S.; Overvad, K.; Jakobsen, M.U. Substitution of milk with whole-Fat yogurt products or cheese is associated with a lower risk of myocardial infarction: The Danish diet, cancer and health cohort. J. Nutr. 2020, 150, 1252–1258. [Google Scholar] [CrossRef]
- Weaver, C.M. Dairy matrix: Is the whole greater than the sum of the parts? Nutr. Rev. 2021, 79, 4–15. [Google Scholar] [CrossRef]
- Pimpin, L.; Wu, J.H.; Haskelberg, H.; Del Gobbo, L.; Mozaffarian, D. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS ONE 2016, 11, e0158118. [Google Scholar] [CrossRef]
- McCarthy, K.S.; Lopetcharat, K.; Drake, M.A. Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk. J. Dairy Sci. 2017, 100, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.L.; Blake, A.J.; Rankin, S.A.; Douglass, L.W. Theory of Reasoned Action predicts milk consumption in women. J. Am. Diet. Assoc. 1999, 99, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Richardson-Harman, N.J.; Stevens, R.; Walker, S.; Gamble, J.; Miller, M.; Wong, M.; McPherson, A. Mapping consumer perceptions of creaminess and liking for liquid dairy products. Food Qual. Prefer. 2000, 11, 239–246. [Google Scholar] [CrossRef]
- Jervis, S.M.; Gerard, P.; Drake, S.; Lopetcharat, K.; Drake, M.A. The Perception of Creaminess in Sour Cream: Creaminess Perception in Sour Cream. J. Sens. Stud. 2014, 29, 248–257. [Google Scholar] [CrossRef]
- Prime PR Wire. Available online: https://www.digitaljournal.com/pr/news/prime-pr-wire/the-fat-rich-dairy-products-market-s-size-share-future-growth-rate-and-revenue-and-sales-trends-are-evaluated-in-this-report-with-an-outlook-from-2023-2030-and-an-expected-12-5-cagr- (accessed on 26 April 2023).
- Shori, A.K. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Biglarian, N.; Rafe, A.; Shahidi, S.A. Effect of basil seed gum and κ-carrageenan on the rheological, textural, and structural properties of whipped cream. J. Sci. Food Agric. 2021, 101, 5851–5860. [Google Scholar] [CrossRef]
- Sajedi, M.; Nasirpour, A.; Keramat, J.; Desobry, S. Effect of modified whey protein concentrate on physical properties and stability of whipped cream. Food Hydrocoll. 2014, 36, 93–101. [Google Scholar] [CrossRef]
- Ghorbani-HasanSaraei, A.; Rafe, A.; Shahidi, S.A.; Atashzar, A. Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition. Food Sci. Nutr. 2019, 7, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; He, S.; Yi, H.; Li, Q.; Xu, W.; Wang, R.; Ma, Y. Physical, textural, and rheological properties of whipped cream affected by milk fat globule membrane protein. Int. J. Food Prop. 2018, 21, 1190–1202. [Google Scholar] [CrossRef]
- Rezvani, F.; Abbasi, H.; Nourani, M. Effects of protein–polysaccharide interactions on the physical and textural characteristics of low-fat whipped cream. J. Food Process. Preserv. 2020, 44, e14743. [Google Scholar] [CrossRef]
- Arancibia, C.; Costell, E.; Bayarri, S. Fat replacers in low-fat carboxymethyl cellulose dairy beverages: Color, rheology, and consumer perception. J. Dairy Sci. 2011, 94, 2245–2258. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, M.; Li, J.; Yang, B.; Su, G.; Cui, C.; Jiang, Y. Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll. 2009, 23, 2168–2173. [Google Scholar] [CrossRef]
- Goncu, B.; Celikel, A.; Guler-Akin, M.B.; Akin, M.S. Some properties of kefir enriched with apple and lemon fiber. Mljekarstvo 2017, 67, 208–216. [Google Scholar] [CrossRef]
- Nawar, G.A.M.; Hassan, F.A.M.; Ali, E.K.; Kassem, J.M.; Mohamed, S.H.S. Utilization of Microcrystalline Cellulose Prepared from Rice Straw lnmanufacture of Yoghurt. J. Am. Sci. 2010, 6, 226–231. [Google Scholar]
- Soukoulis, C.; Lebesi, D.; Tzia, C. Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chem. 2009, 115, 665–671. [Google Scholar] [CrossRef]
- Athari, B.; Nasirpour, A.; Saeidy, S.; Esehaghbeygi, A. Physicochemical properties of whipped cream stabilized with electrohydrodynamic modified cellulose. J. Food Process. Preserv. 2021, 45, e15688. [Google Scholar] [CrossRef]
- Erkaya, T.; Ürkek, B.; Doğru, Ü.; Çetin, B.; Şengül, M. Probiotic butter: Stability, free fatty acid composition and some quality parameters during refrigerated storage. Int. Dairy J. 2015, 49, 102–110. [Google Scholar] [CrossRef]
- Ferreira, L.; Borges, A.; Gomes, D.; Dias, S.; Pereira, C.; Henriques, M. Adding value and innovation in dairy SMEs: From butter to probiotic butter and buttermilk. J. Food Process. Preserv. 2022, 46, e14867. [Google Scholar] [CrossRef]
- Gaba, K.; Anand, S.; Syamala, A. Development of Value-Added Butter by Incorporating Whey Protein Hydrolysate-Encapsulated Probiotics. Microorganisms 2023, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines for Americans 2010. U.S. Department of Agriculture; U.S. Department of Health and Human Services. Available online: https://health.gov/sites/default/files/2020-01/DietaryGuidelines2010.pdf (accessed on 1 December 2010).
- Vidanagamage, S.A.; Pathiraje, P.M.H.D.; Perera, O.D.A.N. Effects of Cinnamon (Cinnamomum verum) Extract on Functional Properties of Butter. Procedia Food Sci. 2016, 6, 136–142. [Google Scholar] [CrossRef]
- Dagdemir, E.; Cakmakci, S.; Gundogdu, E. Effect of Thymus haussknechtii and Origanum acutidens essential oils on the stability of cow milk butter. Eur. J. Lipid Sci. Technol. 2009, 111, 1118–1123. [Google Scholar] [CrossRef]
- Wu, S.; Wang, G.; Lu, Z.; Li, Y.; Zhou, X.; Chen, L.; Cao, J.; Zhang, L. Effects of glycerol monostearate and Tween 80 on the physical properties and stability of recombined low-fat dairy cream. Dairy Sci. Technol. 2016, 96, 377–390. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Wang, R.; Wang, Y.; Li, Y.; Zhang, L. Effects of triglycerol monostearate on physical properties of recombined dairy cream. Int. Dairy J. 2020, 103, 104622. [Google Scholar] [CrossRef]
- Fredrick, E.; Heyman, B.; Moens, K.; Fischer, S.; Verwijlen, T.; Moldenaers, P.; Van der Meeren, P.; Dewettinck, K. Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Res. Int. 2013, 51, 936–945. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yuan, D.; Wang, Y.; Li, M.; Zhang, L. The effect of caseins on the stability and whipping properties of recombined dairy creams. Int. Dairy J. 2020, 105, 104658. [Google Scholar] [CrossRef]
- Ziaeifar, L.; Labbafi Mazrae Shahi, M.; Salami, M.; Askari, G.R. Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream. Int. J. Biol. Macromol. 2018, 117, 858–862. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Han, J.; Shi, M.; Wang, Y.; Zhang, L.; Li, Y.; Wu, W. Stability and physical properties of recombined dairy cream: Effects of soybean lecithin. Int. J. Food Prop. 2017, 20, 2223–2233. [Google Scholar] [CrossRef]
- Amirbozorgi, G.; Samadlouie, H.; Shahidi, S.A. Identification and Characterization of Lactic Acid Bacteria Isolated from Iranian Traditional Dairy Products. Int. Biol. Biomed. J. 2016, 2, 47–52. [Google Scholar]
- Seo, C.W. Effect of galactomannan addition on rheological, physicochemical, and microbial properties of cultured sour cream. Food Sci. Biotechnol. 2022, 31, 571–577. [Google Scholar] [CrossRef]
- Khademi, F.; Naghizadeh Raeisi, S.; Younesi, M.; Motamedzadegan, A.; Rabiei, K.; Shojaei, M.; Rokni, H.; Falsafi, M. Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food Chem. Toxicol. 2022, 166, 113244. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations Codex Standard for Fermented Milks. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO: Córdoba, Argentina, 2001; Available online: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf?ua=1 (accessed on 10 October 2001).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Camelo-Silva, C.; Verruck, S.; Ambrosi, A.; Di Luccio, M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. 2022, 14, 462–490. [Google Scholar] [CrossRef]
- Akbari, E.; Asemi, Z.; Kakhaki, R.D.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef]
- Chau, K.; Lau, E.; Greenberg, S.; Jacobson, S.; Yazdani-Brojeni, P.; Verma, N.; Koren, G. Probiotics for infantile colic: A randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J. Pediatr. 2015, 166, 74–78.e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tran, D.Q.; Rhoads, J.M. Probiotics in Disease Prevention and Treatment. J. Clin. Pharmacol. 2018, 58, S164–S179. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Song, E.J.; Han, K.; Lim, T.J.; Lim, S.; Chung, M.J.; Nam, M.H.; Kim, H.; Nam, Y.D. Effect of probiotics on obesity-related markers per enterotype: A double-blind, placebo-controlled, randomized clinical trial. EPMA J. 2020, 11, 31–51. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, C.; Liu, Y.; Kong, L.L.; Bai, H.; Mu, H.; Li, Z.; Geng, H.; Duan, J. Encapsulation of Lactobacillus rhamnosus in Hyaluronic Acid-Based Hydrogel for Pathogen-Targeted Delivery to Ameliorate Enteritis. ACS Appl. Mater. Interfaces 2020, 12, 36967–36977. [Google Scholar] [CrossRef] [PubMed]
- Zamani, B.; Golkar, H.R.; Farshbaf, S.; Emadi-Baygi, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akhavan, R.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial. Int. J. Rheum. Dis. 2016, 19, 869–879. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Freitas, S.C.; Egito, A.Ô.S.; Dos Santos, K.M.O. Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. LWT 2014, 59, 196–203. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Gueye, S.A.; Lupetti, A.; Senesi, S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J. Appl. Microbiol. 2015, 119, 552–559. [Google Scholar] [CrossRef]
- Marzorati, M.; Van den Abbeele, P.; Bubeck, S.; Bayne, T.; Krishnan, K.; Young, A. Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system. Food Res. Int. 2021, 149, 110676. [Google Scholar] [CrossRef]
- Calinoiu, L.F.; Vodnar, D.; Precup, G. A Review: The Probiotic Bacteria Viability under Different Conditions. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2016, 73, 55. [Google Scholar] [CrossRef]
- Do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M.N. Influence of food matrices on probiotic viability—A review focusing on the fruity bases. Trends Food Sci. Technol. 2011, 22, 377–385. [Google Scholar] [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Rokka, S.; Rantamäki, P. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 2010, 231, 1–12. [Google Scholar] [CrossRef]
- Eshrati, M.; Amadei, F.; Van De Wiele, T.; Veschgini, M.; Kaufmann, S.; Tanaka, M. Biopolymer-Based Minimal Formulations Boost Viability and Metabolic Functionality of Probiotics Lactobacillus rhamnosus GG through Gastrointestinal Passage. Langmuir 2018, 34, 11167–11175. [Google Scholar] [CrossRef]
- Amiri, A.; Mousakhani-Ganjeh, A.; Torbati, S.; Ghaffarinejhad, G.; Esmaeilzadeh Kenari, R. Impact of high-intensity ultrasound duration and intensity on the structural properties of whipped cream. Int. Dairy J. 2018, 78, 152–158. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending viability of Bifidobacterium longumin chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Dong, L.M.; Luan, N.T.; Thuy, D.T.K. The viability of encapsulated Lactobacillus plantarum during cupcake baking process, storage, and simulated gastric digestion. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1157–1161. [Google Scholar] [CrossRef]
- Heylen, K.; Hoefman, S.; Vekeman, B.; Peiren, J.; De Vos, P. Safeguarding bacterial resources promotes biotechnological innovation. Appl. Microbiol. Biotechnol. 2012, 94, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain-Iznaga, T.; Villalobos-Carvajal, R.; Leiva-Vega, J.; Sevillano Armesto, E. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food Bioprod. Process. 2020, 124, 57–71. [Google Scholar] [CrossRef]
- Holkem, A.T.; Raddatz, G.C.; Nunes, G.L.; Cichoski, A.J.; Jacob-Lopes, E.; Ferreira Grosso, C.R.; de Menezes, C.R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT 2016, 71, 302–308. [Google Scholar] [CrossRef]
- Raddatz, G.C.; Poletto, G.; Deus, C.D.; Codevilla, C.F.; Cichoski, A.J.; Jacob-Lopes, E.; Muller, E.I.; Flores, E.M.M.; Esmerino, E.A.; de Menezes, C.R. Use of prebiotic sources to increase probiotic viability in pectin microparticles obtained by emulsification/internal gelation followed by freeze-drying. Food Res. Int. 2020, 130, 108902. [Google Scholar] [CrossRef]
- Qi, W.; Liang, X.; Yun, T.; Guo, W. Growth and survival of microencapsulated probiotics prepared by emulsion and internal gelation. J. Food Sci. Technol. 2019, 56, 1398–1404. [Google Scholar] [CrossRef]
- Albertini, B.; Vitali, B.; Passerini, N.; Cruciani, F.; Di Sabatino, M.; Rodriguez, L.; Brigidi, P. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Eur. J. Pharm. Sci. 2010, 40, 359–366. [Google Scholar] [CrossRef]
- Ding, W.K.; Shah, N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 2009, 74, M100–M107. [Google Scholar] [CrossRef]
- Papagianni, M.; Anastasiadou, S. Encapsulation of Pediococcus acidilactici cells in corn and olive oil microcapsules emulsified by peptides and stabilized with xanthan in oil-in-water emulsions: Studies on cell viability under gastro-intestinal simulating conditions. Enzym. Microb. Technol. 2009, 45, 514–522. [Google Scholar] [CrossRef]
- Sabikhi, L.; Babu, R.; Thompkinson, D.K.; Kapila, S. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol. 2010, 3, 586–593. [Google Scholar] [CrossRef]
- Dror, Y.; Cohen, Y.; Yerushalmi-Rozen, R. Structure of gum Arabic in aqueous solution. J. Polym. Sci. 2006, 44, 3265–3271. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Baziwane, D.; He, Q. Gelatin: The Paramount Food Additive. Food Rev. Int. 2003, 19, 423–435. [Google Scholar] [CrossRef]
- Morrison, N.A.; Sworn, G.; Clark, R.C.; Chen, Y.L.; Talashek, T. Gelatin alternatives for the food industry. Prog. Colloid Polym. Sci. 1999, 114, 127–131. [Google Scholar]
- Cortesi, R.; Nastruzzi, C.; Davis, S.S. Sugar cross-linked gelatin for controlled release: Microspheres and disks. Biomaterials 1998, 19, 1641–1649. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Santana, A.S.; Monterrey-Quintero, E.S.; Trindade, M.A.; Netto, F.M. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll. 2010, 24, 336–340. [Google Scholar] [CrossRef]
- Annan, N.T.; Borza, A.D.; Hansen, L.T. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 2008, 41, 184–193. [Google Scholar] [CrossRef]
- Jin, D.X.; Liu, X.L.; Zheng, X.Q.; Wang, X.J.; He, J.F. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem. 2016, 204, 427–436. [Google Scholar] [CrossRef]
- Wang, J.; Nickerson, M.T.; Low, N.H.; Van Kessel, A.G. Efficacy of pea protein isolate-alginate encapsulation on viability of a probiotic bacterium in the porcine digestive tract. Can. J. Anim. Sci. 2017, 97, 214–222. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Kato, A. Review Industrial Applications of Maillard-Type Protein-Polysaccharide Conjugates. Food Sci. Technol. Res. 2002, 8, 193–199. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S.; Martinez-Monteagudo, S. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. J. Food Sci. 2021, 86, 5107–5119. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919. [Google Scholar]
- Bamdad, F.; Shin, S.H.; Suh, J.W.; Nimalaratne, C.; Sunwoo, H. Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules 2017, 22, 609. [Google Scholar] [CrossRef]
- Baisier, W.M.; Labuza, T.P. Maillard Browning Kinetics in a Liquid Model System. Agric. Food Chem. 1992, 40, 707–713. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Development of a spray-dried conjugated whey protein hydrolysate powder with entrapped probiotics. J. Dairy Sci. 2022, 105, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
Technique | Advantages | Disadvantages |
---|---|---|
Extrusion |
|
|
Emulsion |
|
|
Spray drying |
|
|
Fluid-bed drying |
|
|
Material | Advantages [62,76,92] | Disadvantages [76,77,92] |
---|---|---|
k-carrageenan |
|
|
Alginate |
|
|
Pectin |
|
|
Chitosan |
|
|
Starch |
|
|
Arabic gum |
|
|
Gellan gum |
|
|
Gelatin |
|
|
Health Benefits | Biological Benefits | Bioactive Benefits | Functional Benefits |
---|---|---|---|
Control of appetite Exercise recovery Satiety Rich source of amino acids (cysteine, leucine, isoleucine, valine) | Binding of minerals (Zn, Ca), Binding of fatty acids, immunoglobulins, Binding of iron, Protection against intestinal pathogens, Control of acid development in milk, Regulation of muscle protein synthesis, Pre-cursor of glutathione | Antioxidant activity, Antihypertensive activity, Opioid activity, Anti-diabetic activity, Anti-cancer activity, Immunomodulatory activity, Synthesis of muscle protein | Thermal denaturation, Hydration and solubility, Gelation ability, Emulsification property |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaba, K.; Anand, S. Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities. Dairy 2023, 4, 630-649. https://doi.org/10.3390/dairy4040044
Gaba K, Anand S. Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities. Dairy. 2023; 4(4):630-649. https://doi.org/10.3390/dairy4040044
Chicago/Turabian StyleGaba, Kritika, and Sanjeev Anand. 2023. "Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities" Dairy 4, no. 4: 630-649. https://doi.org/10.3390/dairy4040044
APA StyleGaba, K., & Anand, S. (2023). Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities. Dairy, 4(4), 630-649. https://doi.org/10.3390/dairy4040044