Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases
Abstract
:1. Mammary Gland Infections in Dairy Cows
1.1. A Brief Description of Mammary Gland Infection
1.2. Types of Mastitis
1.3. Subclinical Mastitis
1.4. Clinical Mastitis
1.5. Mode of Infection of the Mammary Gland
1.6. The Importance of Somatic Cell Count for Diagnosis of Mammary Gland Infections
1.7. Additional Factors That Cause Elevation of Somatic Cells in the Mammary Gland
2. The Role of Dry Period in Dairy Cow’s Health and Performance
2.1. Background and Importance of the Dry Period on Cows’ Performance
2.2. Physiological Changes of the Mammary Gland during the Dry Period
2.3. Other Physiological Changes during the Dry Period and Susceptibility to New Infections
2.4. The Impact of Mammary Gland Infection on a Dairy Herd
2.5. Effects of Mammary Gland Infections on Milk Production
2.6. Effects of Mammary Gland Infection on Milk Composition
2.7. Effects of Mammary Gland Infections on Dairy Cow Health
2.8. Economic Implications of Mammary Gland Infections
3. Microbial Pathogens That Cause Mammary Gland Infections
3.1. Gram-Positive Pathogens
3.2. Gram-Negative Pathogens
4. Immune Responses during Infections of the Mammary Gland Infection
4.1. Innate Immunity
4.2. Adaptive Immunity
4.3. Recognition of Infectious Bacteria within the Mammary Gland
4.4. Alterations in Serum Components during Mastitis Infections
5. Relation of Mastitis to Other Periparturient Diseases
5.1. Retained Placenta
5.2. Metritis and Endometritis
5.3. Ketosis
5.4. Laminitis
6. Current Approaches to Treatment of Mammary Gland Infections
Application of Antibiotics and Bacterial Resistance
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamra, N. Alternative approach to control intramammary infection in dairy cows—A review. Asian J. Anim. Vet. Adv. 2007, 2, 50–62. [Google Scholar]
- Koeck, A.; Miglior, F.; Kelton, D.F.; Schenkel, F.S. Alternative somatic cell count traits to improve mastitis resistance in Canadian Holsteins. J. Dairy Sci. 2012, 95, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinzón-Sánchez, C.; Cabrera, V.E.; Ruegg, P.L. Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation. J. Dairy Sci. 2011, 94, 1873–1892. [Google Scholar] [CrossRef] [Green Version]
- Harmon, R.J. Symposium: Mastitis and Genetic Evaluations for Somatic Cell Count. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef]
- Government of Canada. Breed Improvement and Genetic Evaluation: Culling and Replacement Rates in Dairy Herds in Canada. 2019. Available online: https://www.dairyinfo.gc.ca/eng/dairy-statistics-and-market-information/dairy-animal-genetics/culling-and-replacement-rates-in-dairy-herds-in-canada/?id=1502475693224 (accessed on 2 January 2021).
- Kirk, J.H.; Bartlett, P.C. Economic Impact of Mastitis in Michigan Holstein Dairy Herds Using Computerized Records System; Agricultural Practises. 1: 3. Philpot, W.N. 1984. Mastitis Management. III; Babson Brothers: Oak Brook, IL, USA, 1988. [Google Scholar]
- Tylor, J.W.; Cullor, J.S. Mammary gland health and disorders. In Large Animal Internal Medicine, 3rd ed.; Smith, B.P., Ed.; Mosby: London, UK, 1990; pp. 1019–1022. [Google Scholar]
- Klocke, P.; Walkenhorst, M.; Butler, G. Reducing antibiotic use for mastitis treatment in organic dairy production systems. In Handbook for Organic Food Safety and Quality; Woodland Publishing: Salt Lake City, UT, USA, 2007; pp. 199–220. [Google Scholar]
- Nickerson, S.C. Managing Clinical Mastitis in Dairy Cows to Reduce Somatic Cell Counts and Improve Milk Quality. 2011. Available online: http://www.ads.uga.edu/2011AnimalDairyScienceReports.html (accessed on 4 July 2018).
- Roberson, J.R. Treatment of Clinical Mastitis. Vet. Clin. Food Anim. Pract. 2012, 28, 271–288. [Google Scholar] [CrossRef]
- Wilson, D.J.; Gonzales, R.N.; Das, H.H. Bovine mastitis pathogen in New York and Pennsylvania: Prevalence and effects on somatic cell count and milk production. J. Dairy Sci. 1997, 80, 2592–2598. [Google Scholar] [CrossRef]
- Pitkala, A.; Haveri, M.; Pyorala, S.; Myllys, V.; Honkanen-Buzalski, T. Bovine mastitis in Finland 2001—Prevalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci. 2004, 87, 2433–2441. [Google Scholar] [CrossRef] [Green Version]
- Kromker, V.; Graowski, N.T.; Redetzky, R.; Hamann, J. Detection of mastitis using selected quarter milk parameters. In Proceedings of the 2nd International Symposium on Bovine Mastitis and Milk Quality, Vancouver, BC, Canada, 12–14 September 2001; pp. 486–487. [Google Scholar]
- Djabri, B.; Bareille, N.; Beaudeau, F.; Seegers, H. Quarter milk somatic cell count in infected dairy cows: A meta-analysis. Vet. Res. 2002, 33, 335–357. [Google Scholar] [CrossRef] [Green Version]
- Madouasse, A.; Huxley, J.N.; Browne, W.J.; Bradley, A.J.; Green, M.J. Somatic cell count dynamics in a large sample of dairy herds in England and Wales. Prev. Vet. Med. 2010, 96, 56–64. [Google Scholar] [CrossRef]
- Nyman, A.K.; Persson Waller, K.; Bennedsgaard, T.W.; Larsen, T.; Emanuelson, U. Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows. J. Dairy Sci. 2014, 97, 5459–5473. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.; Smith, K.L. Managing environmental mastitis. Vet. Clin. Food Anim. Pract. 2012, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. Invited Review: The role of cow, Pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; Arthur, D.G.; Bryan, M.A.; Vermunt, J.J.; Weir, A.M. Clinical and bacteriological response to treatment of clinical mastitis with one of three intramammary antibiotics. N. Z. Vet. J. 2007, 55, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kabelitz, T.; Aubry, E.; van Vorst, K.; Amon, T.; Fulde, M. The Role of Streptococcus spp. in Bovine Mastitis. Microorganisms 2021, 9, 1497. [Google Scholar] [CrossRef]
- Smith, K.L.; Hogan, J.S. A world standard for milk somatic cell count: Is it justified? Bull. Int. Dairy Fed. 1999, 345, 7–10. [Google Scholar]
- Napel, J.T.; de Haas, Y.; de Jong, G.; Lam, T.J.G.M.; Ouweltjes, W.; Windig, J.J. Characterization of distributions of somatic cell counts. J. Dairy Sci. 2009, 92, 1253–1264. [Google Scholar] [CrossRef] [Green Version]
- Rainard, P.; Foucras, G.; Boichard, D.; Rupp, R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. 2018, 101, 6703–6714. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian Austral. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No 1662/2006 of 6 November 2006 Amending Regulation (EC) No 853/2004 of the European Parliament and of the Council Laying Down Specific Hygiene Rules for Food of Animal Origin (Text with EEA Relevance). Available online: https://op.europa.eu/en/publication-detail/-/publication/befe5c7a-c8a0-4518-8742-dc3a1b891836/language-en (accessed on 15 May 2018).
- United States Department of Agriculture. Determining U.S. Milk Quality Using Bulk-Tank Somatic Cell Counts. 2012. Available online: http://www.aphis.usda.gov (accessed on 10 June 2018).
- Schalm, O.W.; Noorlander, D.O. Experiments and observations leading to development of the California mastitis test. J. Am. Vet. Med. Assoc. 1957, 130, 199–204. [Google Scholar] [PubMed]
- Sanford, C.J.; Keefe, G.P.; Sanchez, J.; Dingwells, R.T.; Barkema, H.W.; Leslie, K.E.; Dohoo, I.R. Test characteristics from latent-class models of the California Mastitis Test. Prev. Vet. Med. 2006, 77, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Pradieé, J.; Moraes, C.R.; Gonçalves, M.; Vilanova, M.S.; Corrêa, G.F.; Lauz, O.G.; Osório, M.T.M.; Schmidt, V. Somatic Cell Count and California Mastitis Test as a Diagnostic Tool for Subclinical Mastitis in Ewes. Acta Sci. Vet. 2012, 40, 1038. [Google Scholar]
- Bhutto, A.L.; Murray, R.D.; Woldehiwet, Z. California mastitis test scores as indicators of subclinical intra-mammary infections at the end of lactation in dairy cows. Res. Vet. Sci. 2012, 92, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Poutrel, B.; Rainard, P. California Mastitis test guide of selective dry cow therapy. J. Dairy Sci. 1981, 64, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kehrli Jr, M.E.; Shuster, D.E. Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci. 1994, 77, 619–627. [Google Scholar] [CrossRef]
- Dhakal, I.P. Normal somatic cell count and subclinical mastitis in Murrah buffaloes. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 81–86. [Google Scholar] [CrossRef]
- Weiss, D.; Weinfurtner, M.; Bruckmaier, R.M. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 2004, 87, 3280–3289. [Google Scholar] [CrossRef]
- Curone, G.; Filipe, J.; Cremonesi, P.; Trevisi, E.; Amadori, M.; Pollera, C.; Castiglioni, B.; Turin, L.; Tedde, V.; Vigo, D.; et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res. Vet. Sci. 2018, 116, 88–98. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Kelton, D.F.; Leslie, K.E.; Edge, V.L. Deciding to Dry-Off: Does Level of Production Matter? National Mastitis Council Annual Meeting Proceedings; National Mastitis Council, Inc.: Madison, WI, USA, 2001; pp. 69–79. [Google Scholar]
- Swanson, E.W.; Poffenbarger, J.I. Mammary gland development of dairy heifers during their first gestation. J. Dairy Sci. 1979, 62, 702–714. [Google Scholar] [CrossRef]
- Jones, G.M. Proper Dry Cow Management Critical for Mastitis Control; Virginia Polytechnic Institute and State University, College of Agriculture and Life Sciences: Blacksburg, VA, USA, 2009. [Google Scholar]
- Sjaastad, Ø.V.; Sand, O.; Hove, K. Physiology of Domestic Animals, 3rd ed.; Scandinavian Veterinary Press: Oslo, Norway, 2016. [Google Scholar]
- Funk, D.A.; Freeman, A.E.; Berger, P.J. Effects of previous days open, previous days dry, and present days open on lactation yield. J. Dairy Sci. 1987, 70, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Watters, R.D.; Guenther, J.N.; Brickner, A.E.; Rastani, R.R.; Crump, P.M.; Clark, P.W.; Grummer, R.R. Effects of dry period length on milk production and health of dairy cattle. J. Dairy Sci. 2008, 91, 2595–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Trevisi, E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. Ital. J. Anim. Sci. 2020, 19, 51–65. [Google Scholar] [CrossRef]
- Majumder, S.; Jung, D.; Ronholm, J.; George, S. Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiol. 2021, 21, 222. [Google Scholar] [CrossRef]
- Oliver, S.P.; Bushe, T. Inhibition of coliform mastitis pathogen growth during involution of the bovine mammary gland. In Proceedings of the Symposium on Mastitis Control and Hygienic Production of Milk, Espoo, Finland, 10–12 June 1986; pp. 25–30. [Google Scholar]
- Arnold, M. Management of the Dry Cow to Prevent Mastitis; University of Kentucky College of Agriculture: Lexington, KY, USA, 2012; p. 40546. Available online: https://afs.ca.uky.edu/dairy/management-dry-cow-prevent-mastitis (accessed on 26 April 2018).
- Senger, P.L. Pathways to Pregnancy and Parturition, 3rd ed.; Innovative Technologies: Pullman, WA, USA, 2012; p. 381. [Google Scholar]
- Sordillo, L.M.; Nickerson, S.C.; Oliver, S.P. Morphological evaluation of bovine mammary tissue throughout involution and colostrogenesis. J. Dairy Sci. 1987, 70, 247. [Google Scholar]
- Sordillo, L.M.; Nickerson, S.C. Morphologic changes in the bovine mammary gland during involution and lactogenesis. Am. J. Vet. Res. 1988, 49, 1112–1120. [Google Scholar]
- Kehrli, M.E., Jr.; Nonnecke, B.J.; Roth, J.A. Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 1989, 50, 207–214. [Google Scholar]
- Goff, J.P.; Horst, R.L. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 1997, 80, 1260–1268. [Google Scholar] [CrossRef]
- Mallard, B.A.; Dekkers, J.C.; Ireland, M.J.; Leslie, K.E.; Sharif, S.; Vankampen, C.L.; Wagter, L.; Wilkie, B.N. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J. Dairy Sci. 1998, 81, 585–595. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Bradford, B.J.; Bobe, G.; Nafikov, R.A.; Lu, Y.; Young, J.W.; Beitz, D.C. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Can. J. Anim. Sci. 2005, 85, 165–175. [Google Scholar] [CrossRef]
- Natzke, R.P.; Everett, R.W.; Bray, D.R. Effect of drying off practices on mastitis infection. J. Dairy Sci. 1975, 58, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Siivonen, J.; Taponen, S.; Hovinen, M.; Pastell, M.; Lensink, B.J.; Pyörälä, S.; Hänninen, L. Impact of acute clinical mastitis on cow behaviour. Appl. Anim. Behav. Sci. 2011, 132, 101–106. [Google Scholar] [CrossRef]
- Petrovski, K.R.; Stefanov, E. Milk Composition Changes during Mastitis. DeLaval. 2006. Available online: www.milkproduction.com/Library/Scientific-articles/Animal-Health/Milk-composition-changes (accessed on 23 November 2018).
- McManaman, J.L.; Neville, M.C. Mammary physiology and milk secretion. Adv. Drug Del. Rev. 2003, 55, 629–641. [Google Scholar] [CrossRef]
- Nguyen, D.; Neville, A.D.; Margaret, C. Tight Junction Regulation in the Mammary Gland. J. Mammary Gland Biol. Neoplasia 1998, 3, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Coats, S.; Rogers, G.L.; McDowell, G.H. Changes in the composition of milk from healthy and mastitic dairy cows during the lactation cycle. Aust. J. Exp. Agric. 1995, 35, 427–436. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Ontsouka, C.E.; Blum, J.W. Fractionized milk composition in dairy cows with subclinical mastitis. Vet. Med. Czech. 2004, 8, 283–290. [Google Scholar] [CrossRef]
- Shuster, D.E.R.J.; Harmon, J.A.; Jackson, R.E.; Hemken, R.E. Suppression of Milk Production During Endotoxin-Induced Mastitis. J. Dairy Sci. 1991, 74, 3763–3774. [Google Scholar] [CrossRef]
- Auldist, M.J.; Hubble, I.B. Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 1998, 53, 28–36. [Google Scholar]
- LeBlanc, S.J.; Duffield, T.F.; Leslie, K.E.; Bateman, K.G.; Keefe, G.P.; Walton, J.S.; Johnson, W.H. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 2002, 85, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.K. Bovine acidosis: Implications for laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Warnick, L.D.; Janssen, D.; Guard, C.L.; Grohn, Y.T. The effect of lameness on milk production in dairy cows. J. Dairy Sci. 2001, 84, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L. Risk Factors for and Treatment of Ketosis in Lactating Dairy Cows. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2013; pp. 1–162. [Google Scholar]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Dunn, S.M.; Ametaj, B.N. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novac, C.S.; Andrei, S. The Impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: A Review. Pathogens 2020, 9, 882. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.P.; Uribe-Luna, S.; Conneely, O.M. Lactoferrin and host defense. Biochem. Cell Biol. 2002, 80, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Petitclerc, D.; Lacasse, P. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci. 2002, 85, 1141–1149. [Google Scholar] [CrossRef]
- Smith, K.L.; Oliver, S.P. Lactoferrin: A component of nonspecific defense of the involuting bovine mammary gland. Adv. Exp. Med. Biol. 1981, 137, 535–554. [Google Scholar]
- Ollivier-Bousquet, M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J. Mammary Gland Biol. Neoplasia 1998, 3, 303–313. [Google Scholar] [CrossRef]
- Rogers, S.A.; Slattery, S.L.; Mitchell, G.E.; Hirst, P.A.; Grieve, P.A. The relationship between somatic cell count, composition and manufacturing properties of bulk milk. 3. Individual proteins. Aust. J. Dairy Tech. 1989, 44, 49–52. [Google Scholar]
- McFadden, T.B.; Akers, R.M.; Capuco, A.V. Relationship of milk proteins in blood with somatic cell counts in milk of dairy cows. J. Dairy Sci. 1988, 71, 826–834. [Google Scholar] [CrossRef]
- Bisutti, V.; Vanzin, A.; Toscano, A.; Pegolo, S.; Giannuzzi, D.; Tagliapietra, F.; Schiavon, S.; Gallo, L.; Trevisi, E.; Negrini, R.; et al. Impact of somatic cell count combined with differential somatic cell count on milk protein fractions in Holstein cattle. J. Dairy Sci. 2022, 105, 6447–6459. [Google Scholar] [CrossRef]
- Holdaway, R.J. A Comparison of Methods for the Diagnosis of Bovine Subclinical Mastitis within New Zealand Dairy Herds. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 1990. [Google Scholar]
- Zachos, T.; Politis, I.; Gorewit, R.C.; Barbano, D.M. Effect of mastitis on plasminogen activator of milk somatic cells. J. Dairy Res. 1992, 59, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Linde, A.; Ross, C.R.; Davis, E.G.; Dib, L.; Blecha, F.; Melgarejo, T. Innate immunity and host defense peptides in veterinary medicine. J. Vet. Inter. Med. 2008, 22, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, F.; Vangroenweghe, F.; Haddadietal, K. Proteolysis in milk during experimental Escherichia coli mastitis. J. Dairy Sci. 2004, 87, 2923–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opdebeeck, J.P. Mammary gland immunity. J. Am. Vet. Med. Assoc. 1982, 181, 1061–1065. [Google Scholar] [PubMed]
- Paudyal, S.; Melendez, P.; Manriquez, D.; Velasquez-Munoz, A.; Pena, G.; Roman-Muniz, I.N.; Pinedo, P.J. Use of milk electrical conductivity for the differentiation of mastitis causing pathogens in Holstein cows. Animal 2020, 14, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 2002, 87, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Danzter, R. Cytokine-induced sickness behavior: Where do we stand? Brain Behav. Immun. 2001, 15, 7–24. [Google Scholar]
- Jensen, M.B.; Munksgaard, L.; Pederson, L.J.; Ladewig, J.; Matthews, L. Prior deprivation and reward duration affect the demand function for rest in dairy heifers. App. Anim. Behav. Sci. 2004, 88, 1–11. [Google Scholar] [CrossRef]
- Fogsgaard, K.K.; Røntved, C.M.; Sørensen, P.; Herskin, M.S. Sickness behaviour in dairy cows during Escherichia coli mastitis. J. Dairy Sci. 2011, 95, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Weary, D.M.; Niel, L.; Flower, F.C.; Fraser, D. Identifying and preventing pain in animals. Appl. Anim. Behav. Sci. 2006, 100, 64–76. [Google Scholar] [CrossRef]
- Aghamohammadi, M.; Haine, D.; Kelton, D.F.; Barkema, H.W.; Hogeveen, H.; Keefe, G.P.; Dufour, S. Herd-Level Mastitis-Associated Costs on Canadian Dairy Farms. Front. Vet. Sci. 2018, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- National Mastitis Council. Current Concepts of Bovine Mastitis, 4th ed.; National Mastitis Council: Madison, WI, USA, 1996. [Google Scholar]
- Olde Riekerink, R.G.M.; Barkema, H.W.; Kelton, D.F.; Scholl, D.T. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson Waller, K.; Bengtsson, B.; Lindberg, A.; Nyman, A.; Ericsson Unnerstad, H. Incidence of mastitis and bacterial findings at clinical mastitis in Swedish primiparous cow-influence of breed and stage of lactation. Vet. Microbiol. 2009, 134, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Sol, J.; Sampimon, O.C.; Snoep, J.J.; Schukken, Y.H. Factors associated with bacteriological cure during lactation after therapy for subclinical mastitis caused by Staphylococcus aureus. J. Dairy Sci. 1997, 80, 2803–2808. [Google Scholar] [CrossRef]
- Ryan, K.J.; Ray, C.G. Sherris Medical Microbiology: An Introduction to Infectious Diseases, 4th ed.; McGraw Hill Publishers: New York, NY, USA, 2004; p. 937. [Google Scholar]
- Kerro Dego, O.J.; van Dijk, E.; Nederbragt, H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review. Vet. Q. 2002, 24, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.D.; Paape, M.J.; Lee, J.W.; Zhao, X.; Hope, J.C.; Rainard, P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 2004, 11, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guntler, J.; Liu, S.; Esch, K.; Schuberth, H.J.; Seyfert, H.M. Stimulated expression of TNF-α and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells. Vet. Immunol. Immunopathol. 2010, 135, 152–157. [Google Scholar] [CrossRef]
- Riollet, C.; Rainard, P.; Poutrel, B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv. Exp. Exp. Med. Biol. 2000, 480, 247–258. [Google Scholar]
- Rainard, P.; Fromageau, A.; Cunha, P.; Gilbert, F.B. Staphylococcus aureus lipoteichoic acid triggers inflammation in the lactating bovine mammary gland. Vet. Res. 2008, 39, 52. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M. Ole of Cytokines. In Immunopharmacology, 2nd ed.; Springer Science + Business Media: New York, NY, USA, 2008; pp. 33–59. [Google Scholar]
- Alnakip, M.E.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. Review Article: The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 659801. [Google Scholar] [CrossRef] [Green Version]
- Lara-Zarate, L.; Lopez-Meza, J.E.; Ochoa-Zarzosa, A. Staphylococcus aureus inhibits nuclear factor kappa B activation mediated by prolactin in bovine mammary epithelial cells. Microb. Pathog. 2011, 51, 313–318. [Google Scholar] [CrossRef]
- Eckel, E.F.; Ametaj, B.N. Invited Review: Roles of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J. Dairy Sci. 2016, 99, 5967–5990. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, F.B.; Cunha, P.; Jensen, K.; Glass, E.J.; Foucras, G.; Robert-Granie, C.; Rupp, R.; Rainard, P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet. Res. 2013, 44, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannini, A.E.J.; van den Borne, B.H.P.; Wall, S.K.; Wellnitz, O.; Bruckmaier, R.M.; Spadavecchia, C. Experimentally induced subclinical mastitis: Are lipopolysaccharide and lipoteichoic acid eliciting similar pain response? Acta Vet. Scand. 2017, 59, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, S.K.; Wellnitz, O.; Hernandez-Castellano, L.E.; Ahmadpour, A.; Bruckmaier, R.M. Supraphysiological oxytocin increases the transfer of immunoglobulins and other blood components to milk during lipopolysaccharide- and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy Sci. 2016, 99, 9165–9173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersson-Wolfe, C. Streptococcus uberis: A Practical Summary for Controlling Mastitis; College of Agriculture and Life Science, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2012. [Google Scholar]
- Hogan, J.S.; Smith, K.L. Occurrence of clinical and sub-clinical environmental streptococci mastitis. In Proceedings of the Symposium on Udder Health Management for Environmental Streptococci, Arlington, VA, USA; 1997; pp. 59–75. [Google Scholar]
- NIRD. National Institute for Research in Dairying Annual Report; CABI: Wallingford, UK, 1970; p. 65. [Google Scholar]
- NIRD. National Institute for Research in Dairying Annual Report; CABI: Wallingford, UK, 1974; p. 56. [Google Scholar]
- Leigh, J.A. Streptococcus uberis: A Permanent Barrier to the Control of Bovine Mastitis? Vet. J. 1999, 157, 225–238. [Google Scholar] [CrossRef]
- Leigh, J.A.; Field, T.R. Killing of Streptococcus uberis by bovine neutrophils following growth in chemically defined media. Vet. Res. Comm. 1991, 15, 1–6. [Google Scholar] [CrossRef]
- Thomas, L.H.; Hader, W.; Hill, A.W.; Cook, R.S. Pathologic findings of experimentally induced Streptococcus uberis infection in the mammary gland of cows. Am. J. Vet. Res. 1994, 55, 1723–1728. [Google Scholar]
- Leigh, J.A.; Egan, S.S.; Ward, P.N.; Field, T.R.; Coffey, T.J. Sortase anchored proteins of Streptococcus uberis play major roles in the pathogenesis of bovine mastitis in dairy cattle. Vet. Res. 2010, 41, 63. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Keefe, G.P. Streptococcus agalactiae mastitis: A review. Can. Vet. J. 1997, 38, 429–437. [Google Scholar] [PubMed]
- Wente, N.; Krömker, V. Streptococcus dysgalactiae—Contagious or Environmental? Animals 2020, 10, 2185. [Google Scholar] [CrossRef] [PubMed]
- Calvinho, L.F.; Almeida, R.A.; Oliver, S.P. Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Microbiol. 1998, 61, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Koneman, E.W.; Allen, S.D.; Dowell, V.R.; Sommer, H.M. The Enterbacteriacea. In Color Atlas and Textbook of Diagnostic Microbiology; Lippincott Company: New York, NY, USA, 1983; pp. 57–124. [Google Scholar]
- Hogan, J.; Smith, K.L. Review article: Coliform Mastitis. Vet. Res. 2003, 34, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, I.M.; Noakes, D.E.; Rycroft, A.N.; Pfeiffer, D.U.; Dobson, H. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 2002, 123, 837–845. [Google Scholar] [CrossRef]
- Smith, K.L.; Schanbacher, F.L. Lactoferrin as a factor of resistance to infection in the mammary gland. J. Vet. Am. Vet. Med. Assoc. 1976, 170, 1224–1227. [Google Scholar]
- Todhunter, D.A.; Smith, K.L.; Hogan, J.S.; Schoenberger, P.S. Gram-negative bacterial infection of the mammary gland in cows. Am. J. Vet. Res. 1991, 52, 184–188. [Google Scholar]
- Mashburn-Warren, L.R.; McLean, R.J.; Whiteley, M. Gram-negative outer membrane vesicles: Beyond the cell surface. Geobiology 2008, 6, 214–219. [Google Scholar] [CrossRef]
- Hakogi, E.; Tamura, H.; Tanaka, S.; Kohata, A.; Shimada, Y.; Tabuchi, K. Endotoxin levels in milk and plasma of mastitis-affected cow measured with a chromogenic limulus text. Vet. Microbiol. 1989, 20, 267–274. [Google Scholar] [CrossRef]
- Dosogne, H.; Meyer, E.; Struk, A.; van Loon, J.; Massart-Leen, A.M.; Burvenich, C. Effect of enrofloxacin treatment of plasma endotoxin during bovine Escherichia coli mastitis. Inflamm. Res. 2002, 51, 201–205. [Google Scholar] [CrossRef]
- Bronzo, V.; Lopreiato, V.; Riva, F.; Amadori, M.; Curone, G.; Addis, M.F.; Cremonesi, P.; Moroni, P.; Trevisi, E.; Castiglioni, B. The role of innate immune response and microbiome in resilience of dairy cattle to disease: The mastitis model. Animals 2020, 10, 1397. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P.; Riollet, C. Innate immunity of the bovine mammary gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.S.; Wooding, F.B.; Kemp, P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J. Dairy Res. 1980, 47, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Fox, L.K.; Hamilton, M.J.; Davis, W.C. Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J. Dairy Sci. 1992, 75, 998–1006. [Google Scholar] [CrossRef]
- Paape, M.J.; Guidry, A.J. Effect of milking on leucocytes in the subcutaneous abdominal vein of the cow. J. Dairy Sci. 1969, 52, 998–1002. [Google Scholar] [CrossRef]
- Denis, M.; Parlane, N.A.; Lacy-Hulbert, S.J.; Summers, E.L.; Buddle, B.M.; Wedlock, D.N. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows. Vet. Immunol. Immunopathol. 2006, 114, 111–120. [Google Scholar] [CrossRef]
- Fitzpatrick, J.L.; Cripps, P.J.; Hill, A.W.; Bland, P.W.; Stokes, C.R. MHC class II expression in the bovine mammary gland. Vet. Immunol. Immunopathol. 1992, 32, 13–23. [Google Scholar] [CrossRef]
- Rossi, C.R.; Kiesel, G.K. Bovine immunoglobulin G subclass receptor sites on bovine macrophages. Am. J. Vet. Res. 1977, 38, 1023–1025. [Google Scholar]
- Miller, R.; Paape, M.; Fulton, L.; Schutz, M. The relationship of milk somatic cell count to milk yields for Holstein heifers after first calving. J. Dairy Sci. 1993, 76, 728–733. [Google Scholar] [CrossRef]
- Paape, M.J.; Shafer-Weaver, K.; Capuco, A.V.; Van Oostveldt, K.; Burvenich, C. Immune surveillance of mammary tissue by phagocytic cells. Adv. Exp. Med. Biol. 2000, 480, 259–277. [Google Scholar]
- Prin-Mathieu, C.; Le Roux, Y.; Faure, G.C.; Laurent, F.; Béné, M.C.; Moussaoui, F. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphnuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol. 2002, 9, 812–817. [Google Scholar] [PubMed] [Green Version]
- Paape, M.J.; Mehrzad, J.; Zhao, X.; Detilleux, J.; Burvenich, C. Defense of the bovine mammary gland by polymorphnuclear neutrophil leukocytes. J. Mammary Gland Biol. Neoplasia 2002, 7, 109–121. [Google Scholar] [CrossRef]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.W. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 2003, 34, 597–627. [Google Scholar] [PubMed] [Green Version]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.C.; Dellinger, J.D.; Culler, J.S.; Stott, J.L. Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8+. Cell. Immunol. 1994, 156, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Shafer-Weaver, K.A.; Sordillo, L.M. Bovine CD8+ suppressor lymphocytes alter immune responsiveness during the post-partum period. Vet. Immunol. Immunopathol. 1997, 56, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Broere, F.; Apasov, S.G.; Sitkovsky, M.V.; van Eden, W. T cell subsets and T cell-mediated immunity. In Principles of Immunopharmacology, 3rd ed.; Nijkamp, F.P., Parnham, M.J., Eds.; Springer: Cham, Switzerland, 2011; pp. 15–26. [Google Scholar]
- Shafer-Weaver, K.A.; Pighetti, G.M.; Sordillo, L.M. Diminished mammary gland lymphocyte functions parallel shifts in trafficking patterns during the postpartum period. Exp. Biol. Med. 1996, 212, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Mackay, C.R.; Hein, W.R. Marked variations in gd T cell numbers and distribution throughout the life of sheep. Curr. Top. Microbiol. Immunol. 1991, 173, 107–111. [Google Scholar]
- Roitt, I.; Brostoff, J.; Male, D. Immunology; Mosby: Philadelphia, PA, USA, 2001; p. 480. [Google Scholar]
- Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388, 394–397. [Google Scholar] [CrossRef]
- Gao, B.; Jeong, W.I.; Tian, Z. Liver: An organ with predominant innate immunity. Hepatology 2008, 47, 729–736. [Google Scholar] [CrossRef]
- Cruvinel, W.M.; Junior, D.M.; Araujo, J.A.P.; Catelan, T.T.T.; Souza, A.W.S.; Silva, N.P.; Andrade, L.E.C. Immune System—Part 1: Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev. Bras. Reumatol. 2010, 50, 434–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Dunn, S.M.; Ametaj, B.N. Innate immunity and carbohydrate metabolism alterations precede occurrence of subclinical mastitis in transition dairy cows. J. Anim. Sci. Technol. 2015, 57, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Goldansaz, S.A.; Deng, Q.; Dunn, S.M.; Ametaj, B.N. Alterations in innate immunity reactants and carbohydrate and lipid metabolism precede occurrence of metritis in transition dairy cows. Res. Vet. Sci. 2016, 104, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Deng, Q.; Goldansaz, S.A.; Dunn, S.M.; Ametaj, B.N. Alterations of innate immunity reactants in transition dairy cows before clinical signs of lameness. Animals 2015, 5, 717–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Goldansaz, S.A.; Deng, Q.; Dunn, S.M.; Ametaj, B.N. Dairy cows affected by ketosis shown alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum. Res. Vet. Sci. 2016, 107, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Hoeben, D.; Burvenich, C.; Trevisi, E.; Bertoni, G.; Hamann, J.; Bruckmaier, R.M.; Blum, J.W. Role of endotoxin and TNF-a in the pathogenesis of experimentally induced coliform mastitis in periparturient cows. J. Dairy Res. 2000, 67, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Hisaeda, K.; Hagiwara, K.; Eguchi, J.; Yamanaka, H.; Kirisawa, R.; Iwai, H. Interferon-gamma and tumor necrosis factor-alpha levels in sera and whey of cattle with naturally occurring coliform mastitis. J. Vet. Med. Sci. 2001, 63, 1009–1011. [Google Scholar] [CrossRef]
- Blum, J.W.; Dosogne, H.; Hoeben, D.; Vangroenweghe, F.; Hammon, H.M.; Bruckmaier, R.M.; Burvenich, C. Tumor necrosis alpha and nitrite/nitrate responses during acute mastitis induced by Eschericia coli infection and endotoxin in dairy cows. Domest. Anim. Endocrinol. 2000, 19, 223–235. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Hosseini, A.; Odhiambo, J.F.; Iqbal, S.; Sharma, S.; Deng, Q.; Lam, T.H.; Farooq, U.; Zebeli, Q.; Dunn, S.M. Application of acute phase proteins for monitoring inflammatory states in cattle. In Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases; Veas, F., Ed.; Intech Europe: Rijeka, Croatia, 2011; pp. 299–354. [Google Scholar]
- Wassell, J. Haptoglobin: Function and polymorphism. Clin. Lab. 2000, 46, 547–552. [Google Scholar]
- Quaye, I.K. Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 735–742. [Google Scholar] [CrossRef]
- Allen, S.E.; Holm, J.L. Lactate: Physiology and clinical utility. J. Vet. Emerg. Crit. Care 2008, 18, 123–132. [Google Scholar] [CrossRef]
- Davis, S.R.; Farr, V.C.; Prosser, C.G.; Nicholas, G.D.; Turner, S.A.; Lee, J.; Hart, A.L. Milk L-lactate concentration is increased during mastitis. J. Dairy Sci. 2004, 71, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Schröder, U.J.; Staufenbiel, R. Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. J. Dairy Sci. 2006, 89, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffield, T.F.; LeBlanc, S.J. Interpretation of serum metabolic parameters around the transition period. 2009. Available online: http://animal.cals.arizona.edu/swnmc/Proceedings/2009/11Duffield_2_09.pdf (accessed on 26 January 2018).
- LeBlanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, V.; Weber, T.E.; Baumgard, L.H.; Gabler, N.K. Growth and development symposium: Endotoxin, inflammation, and intestinal function in livestock. J. Anim. Sci. 2012, 90, 1452–1465. [Google Scholar] [CrossRef]
- Ghoshal, S.; Witta, J.; Zhong, J.; de Villiers, W.; Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 2009, 50, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Opsomer, G. Metritis and endometritis in high yielding dairy cows. Rev. Bras. Reprod. Anim. Belo Horiz. 2015, 39, 164–172. [Google Scholar]
- Lucey, S.; Rowlands, G.J.; Russell, A.M. Short-term associations between disease and milk yield of dairy cows. J. Dairy Res. 1986, 53, 7–15. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Zebeli, Q.; Iqbal, S. Nutrition, microbiota, and endotoxin-related diseases in dairy cows. Rev. Bras. Zootec. 2010, 39, 433–444. [Google Scholar] [CrossRef]
- Theas, M.S.; De Laurentiis, A.; Lasaga, M.; Pisera, D.; Duvilanski, B.H.; Seilicovich, A. Effect of lipopolysaccharide on tumour necrosis factor and prolactin release from rat anterior pituitary cells. Endocrine 1998, 8, 241–245. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the Female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drillich, M.; Beetz, O.; Pfutzner, A.; Sabin, M.; Sabin, H.J.; Kutzer, P.; Nattermann, H.; Heuwieser, W. Evaluation of a systemic antibiotic treatment of toxic puerperal metritis in dairy cows. J. Dairy Sci. 2001, 84, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Markusfeld, O. Periparturient traits in seven high dairy herds. Incidence rates, association with parity, and interrelationships among traits. J. Dairy Sci. 1987, 70, 158–166. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V.; Kastelic, J.P. Mucin 1 and cytokines mRNA in endometrium of dairy cows with postpartum uterine disease of repeat breeding. Theriogenology 2014, 81, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.; Otterness, I.G.; Ng, R.; Gessner, A.; Rollinghoff, M.; Beuscher, H.U. Neutralization of endogenous IL-6 supress induction of IL-1 receptor antagonist. J. Immunol. 1995, 154, 4081–4090. [Google Scholar] [PubMed]
- Chan, J.P.W.; Chang, C.; Hsu, W.L.; Liu, W.B.; Chen, T.H. Association of increase serum acute-phase protein concentration with reproductive performances in dairy cows with postpartum metritis. Vet. Clin. Pathol. 2010, 39, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, J.; Duffield, T.; Leslie, K.; Walton, J.; LeBlanc, S. Definitions and diagnosis of postpartum endometritis in dairy cows. J. Dairy Sci. 2010, 93, 5225–5233. [Google Scholar] [CrossRef]
- Moore, D.A.; Cullor, J.S.; BonDurant, R.H.; Sischo, W.M. Preliminary field evidence for the association of clinical mastitis with altered interestrus intervals in dairy cattle. Theriogenology 1991, 36, 257–265. [Google Scholar] [CrossRef]
- Hansen, P.J.; Soto, P.; Natzke, R.P. Mastitis and fertility in cattle—Possible involvement of inflammation or immune activation in embryonic mortality. Am. J. Reprod. Immunol. 2004, 51, 294–301. [Google Scholar] [CrossRef]
- Risco, C.A.; Donovan, G.A.; Hernandez, J. Clinical mastitis associated with abortion in dairy cows. J. Dairy Sci. 1999, 82, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Herath, S.; Williams, E.J.; Lilly, S.T.; Gilbert, R.O.; Dobson, H.; Bryant, C.E.; Sheldon, I.M. Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 2007, 134, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Herath, S.; Lilly, S.T.; Fischer, D.P.; Williams, E.J.; Dobson, H.; Bryant, C.E.; Sheldon, I.M. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2a to prostaglandin E2 in bovine endometrium. Endocrinology 2009, 150, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.M.; Hatler, T.B.; Silvia, W.J. The effect of the intramammary infusion of Escherichia coli endotoxin on ovulation in lactating dairy cows. Rep. Biol. 2002, 2, 295–309. [Google Scholar]
- Duffield, T.F. Subclinical ketosis in lactating dairy cattle. Vet. Clin. Food Anim. Pract. 2000, 16, 231–253. [Google Scholar] [CrossRef]
- Besleme, H.; Kara, Ç. Physiological and metabolic changes during the transition period and the use of calcium propionate for prevention or treatment of hypocalcemia and ketosis in periparturient cows. J. Biol. Environ. Sci. 2013, 7, 9–17. [Google Scholar]
- Gordon, J.L.; LeBlanc, S.J.; Duffield, T.F. Ketosis treatment in lactating dairy cattle. Vet. Clin. Food Anim. Pract. 2013, 29, 433–445. [Google Scholar] [CrossRef]
- Erb, H.N.; GroÈhn, Y.T. Epidemiology of metabolic disorders in the periparturient dairy cows. J. Dairy Sci. 1988, 71, 2557–2571. [Google Scholar] [CrossRef]
- Loor, J.J.; Everts, R.E.; Bionas, M.; Dann, H.M.; Morin, D.E.; Oliviera, R.; Rodriguez-Zas, S.L.; Drackley, J.A.; Lewin, H.A. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol. Genom. 2007, 32, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Kushibiki, S.; Hodate, K.; Shingu, H.; Obara, Y.; Touno, E.; Shinoda, M.; Yokomizo, Y. Metabolic and lactational responses during recombinant bovine tumour necrosis factor-α treatment in lactating dairy cows. J. Dairy Sci. 2003, 86, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Kremer, W.D.J.; Burvenich, C.; Noordhuizen-Stassen, E.N.; Grommers, F.J.; Schukken, Y.H.; Heeringa, R.; Brand, A. Severity of experimental Escherichia coli mastitis in ketonemic and non-ketonemic dairy cows. J. Dairy Sci. 1993, 76, 3428–3436. [Google Scholar] [CrossRef] [PubMed]
- Bruckmaier, R.M.; Schällibaum, M.; Blum, J.W. Escherichia coli endotoxin-induced mastitis in dairy cows: Changes and importance of insulin-like growth factor1 and oxytocin. Milchwissenschaft 1993, 48, 374–378. [Google Scholar]
- Vernay, M.C.M.B.; Wellnitz, O.; Kreipe, L.; van Dorland, H.A.; Bruckmaier, R.M. Local and systemic response to intra-mammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. J. Dairy Sci. 2012, 95, 2540–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrin, M.; Wellnitz, O.; van Dorland, H.A.; Bruckmaier, R.M. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. J. Dairy Sci. 2014, 97, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Zarrin, M.; Wellnitz, O.; van Dorland, H.A.; Gross, J.J.; Bruckmaier, R.M. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows. J. Dairy Sci. 2014, 97, 3531–3541. [Google Scholar] [CrossRef] [Green Version]
- Weaver, A.D.; Jean, G.S.; Steiner, A. Bovine Surgery and Lameness, 2nd ed.; Blackwell: Oxford, UK, 2005; pp. 198–258. [Google Scholar]
- Boosman, R.; Mutsaers, C.W.; Klarenbeek, A. The role of endotoxin in the pathogenesis of acute bovine laminitis. Vet. Q. 1991, 13, 155–162. [Google Scholar] [CrossRef]
- Cook, N.B.; Bennett, T.B.; Nordlund, K.V. Effect of free stall surface on daily activity patterns in dairy cows with relevance to lameness prevalence. J. Dairy Sci. 2004, 87, 2912–2922. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, S.J.; Tierney, G.; Stockwell, C.; Logue, D.N.; Kelly, M. An evaluation of mattress and mats in two dairy units. Appl. Anim. Behav. Sci. 2000, 66, 263–272. [Google Scholar] [CrossRef]
- Tucker, C.B.; Weary, D.M.; Fraser, D. Effects of three types of free stall surfaces on preferences and stall usage by dairy cows. J. Dairy Sci. 2003, 86, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Whay, H.R.; Waterman, A.E.; Webster, A.J.F.; O’Brien, J.K. The influence of lesion type on the duration of hyperalgesia associated with hindlimb lameness in dairy cattle. Vet. J. 1998, 156, 23–29. [Google Scholar] [CrossRef]
- Nordlund, K.V.; Cook, N.B. A Flowchart for Evaluating dairy cow free stalls. Bov. Pract. 2003, 37, 89–96. [Google Scholar]
- Archer, S.C.; Green, M.J.; Madouasse, A.; Huxley, J.N. Association between somatic cell count and serial locomotion score assessments in UK dairy herds. J. Dairy Sci. 2011, 94, 4383–4388. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.C.; Mc Coy, F.; Wapenaar, W.; Green, M.J. Association between somatic cell count during the first lactation and the cumulative milk yield of cows in Irish dairy herds. J. Dairy Sci. 2014, 97, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Boontham, P.; Chandra, P.; Rowlands, B.; Eremin, O. Surgical sepsis: Dysregulation of immune function and therapeutic implications. Surgeon 2003, 1, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, K.; Yamanaka, H.; Hisaeda, K.; Taharaguchi, S.; Kirisawa, R.; Iwai, H. Concentrations of IL-6 in serum and whey from healthy and mastitis cows. Vet. Res. Commun. 2001, 25, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Nakada, K.; Hagiwara, K.; Kirisawa, R.; Iwai, H.; Moriyoshi, M.; Sawamukai, Y. Changes in interleukin-6 concentration in peripheral blood of pre- and post-partum dairy cattle and its relationship to postpartum reproductive diseases. J. Vet. Med. Sci. 2004, 66, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, D.G.; Dunn, S.M.; Ametaj, B.N. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J. Dairy Sci. 2008, 91, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjords, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.V.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Smith, H.W. Persistence of tetracycline resistance in pig E. coli. Nature 1975, 258, 628–630. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Seyfarth, A.M.; Emborg, H.D.; Pedersen, K.; Hendriksen, R.S.; Bager, F. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 2001, 45, 2054–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, S.P.; Sordillo, L.M. Udder health in the perparturient period. J. Dairy Sci. 1988, 71, 2584–2606. [Google Scholar] [CrossRef] [PubMed]
Subclinical Mastitis | Clinical Mastitis | |||||
---|---|---|---|---|---|---|
Signs | SCC Level 1 | Severity | Category | Signs | SCC Level 1 | Severity |
Reduced production, increased SCC, changes in milk components, pathogen presence. | >200 | Culturing milk samples or indirect tests including measuring SCC can determine presence. Non-visible signs that have the potential to infect the entire herd. | Peracute | Rapid onset with signs similar to acute mastitis but more severe, including swelling, heat, and pain in the teats, as well as a significant systemic reaction that can be fatal. | >200 | Reduced production, increased SCC, changes in milk components, pathogen presence. Laboratory culturing of milk samples can determine severity. |
Acute | Sudden onset, udder is swollen, hard and painful with abnormal milk containing clots or flakes and watery appearance, decreased production, fever, decreased appetite, diminished rumen function, rapid pulse, dehydration, weakness, depression. | >200 | It is potentially fatal and causes severe discomfort. | |||
Subacute | Minor udder inflammation, heat, visible changes in milk (clots, flakes, water-like appearance), some sensitivity to udder. | >200 | Typically, non-life threatening. | |||
Chronic | Milk changes that are visible (clots, flakes, watery appearance). Clinical signs of an acute infection occur on occasion, with no clinical signs for extended periods of time. | >200 | Long-term infection in which culling is recommended. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egyedy, A.F.; Ametaj, B.N. Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases. Dairy 2022, 3, 881-906. https://doi.org/10.3390/dairy3040061
Egyedy AF, Ametaj BN. Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases. Dairy. 2022; 3(4):881-906. https://doi.org/10.3390/dairy3040061
Chicago/Turabian StyleEgyedy, Ashley F., and Burim N. Ametaj. 2022. "Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases" Dairy 3, no. 4: 881-906. https://doi.org/10.3390/dairy3040061
APA StyleEgyedy, A. F., & Ametaj, B. N. (2022). Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases. Dairy, 3(4), 881-906. https://doi.org/10.3390/dairy3040061