Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Experimental Procedure
2.3. Sampling and Chemical Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makkar, H.P. Animal nutrition in a 360-degree view and a framework for future R&D work: Towards sustainable livestock production. Anim. Prod. Sci. 2016, 56, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Vanhatalo, A.; Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 2019, 102, 7102–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying milk composition through forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Elgersma, A.; Søegaard, K.; Jensen, S.K. Fatty acids, α-tocopherol, β-carotene, and lutein contents in forage legumes, forbs, and a grass–clover mixture. J. Agric. Food Chem. 2013, 61, 11913–11920. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M.; Đorđević, N.; Bora, D.; Marković, J.; Vasić, T.; Milenković, J.; Petrović, M. Determination of green forage and silage protein degradability of some pea (Pisum sativum L.) + oat (Avena sativa L.) mixtures grown in Serbia. J. Agric. Sci. 2017, 23, 415–422. [Google Scholar] [CrossRef]
- Lehuger, S.; Gabrielle, B.; Gagnaire, N. Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. J. Clean. Prod. 2009, 17, 616–624. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/plants_and_plant_products/documents/report-plant-proteins-com2018-757-final_en.pdf (accessed on 29 September 2021).
- Luscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Peeters, A.; Parente, G.; Le Gall, A. Temperate legumes: Key-species for sustainable temperate mixtures. Grassl. Sci. Eur. 2006, 11, 205–220. [Google Scholar]
- Borreani, G.; Chion, A.R.; Colombini, S.; Odoardi, M.; Paoletti, R.; Tabacco, E. Fermentative profiles of field pea (Pisum sativum), faba bean (Vicia faba) and white lupin (Lupinus albus) silages as affected by wilting and inoculation. Anim. Feed Sci. Technol. 2009, 151, 316–323. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, A.; Soldado, A.; Vicente, F.; Martínez, A.; de la Roza-Delgado, B. Wilting and inoculation of Lactobacillus buchneri on intercropped triticale-fava silage: Effects on nutritive, fermentative and aerobic stability characteristics. Agric. Food Sci. 2010, 19, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, A.; Soldado, A.; de la Roza-Delgado, B.; Vicente, F.; González-Arrojo, M.A.; Argamentería, A. Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Span. J. Agric. Res. 2016, 11, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- Noziere, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Jensen, S.K.; Johannsen, A.K.B.; Hermansen, J.E. Quantitative secretion and maximal secretion capacity of retinol, beta-carotene and alpha-tocopherol into cows’ milk. J. Dairy Res. 1999, 66, 511–522. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H.; Portier, K.M. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. J. Anim. Sci. 2003, 81, 2357–2366. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Chauveau-Duriot, B.; Doreau, M.; Noziere, P.; Graulet, B. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: Validation of a novel UPLC method. Anal. Bioanal. Chem. 2010, 397, 777–790. [Google Scholar] [CrossRef]
- Gentili, A.; Caretti, F.; Bellante, S.; Ventura, S.; Canepari, S.; Curini, R. Comprehensive profiling of carotenoids and fat-soluble vitamins in milk from different animal species by LC-DAD-MS/MS hyphenation. J. Agric. Food Chem. 2013, 61, 1628–1639. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 16 July 2020).
- Rinne, M.; Leppä, M.M.; Kuoppala, K.; Koivunen, E.; Kahala, M.; Jalava, T.; Salminen, J.P.; Manni, K. Fermentation quality of ensiled crimped faba beans using different additives with special attention to changes in bioactive compounds. Anim. Feed Sci. Technol. 2020, 235, 114497. [Google Scholar] [CrossRef]
- Baizán, S.; Vicente, F.; Oliveira, J.A.; Afif-Khouri, E.; Martínez-Fernández, A. Effect of replacing conventional Italian ryegrass by organic nitrogen source systems on chemical soil properties. Span. J. Agric. Res. 2021, 18, e1105. [Google Scholar] [CrossRef]
- Monti, M.; Pellicanò, A.; Santonoceto, C.; Preiti, G.; Pristeri, A. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crop Res. 2016, 196, 379–388. [Google Scholar] [CrossRef]
- Steinshamn, H. Effect of forage legumes on feed intake, milk production and milk quality–a review. Anim. Sci. Pap. Rep. 2010, 28, 195–206. [Google Scholar]
- Ramin, M.; Höjer, A.; Hetta, M. The effects of legume seeds on the lactation performance of dairy cows fed grass silage-based diets. Agric. Food Sci. 2017, 26, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Weisbjerg, M.R.; Søegaard, K. Feeding value of legumes and grasses at different harvest times. Grassl. Sci. Eur. 2008, 13, 513–515. [Google Scholar]
- Kuoppala, K.; Ahvenjärvi, S.; Rinne, M.; Vanhatalo, A. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 2. Dry matter intake and cell wall digestion kinetics. J. Dairy Sci. 2009, 92, 5634–5644. [Google Scholar] [CrossRef]
- Jiménez-Calderón, J.D.; Martínez-Fernández, A.; Soldado, A.; González, A.; Vicente, F. Faba bean-rapeseed silage as substitute for Italian ryegrass silage: Effects on performance and milk quality of grazing dairy cows. Anim. Prod. Sci. 2020, 60, 913–922. [Google Scholar] [CrossRef]
- Baizán, S.; Vicente, F.; Barhoumi, N.; Feito, I.; Rodríguez, L.; Martínez-Fernández, A. Effect of faba bean silage in dairy cow diets on voluntary intake, milk production and composition of milk. ITEA 2018, 114, 353–367. [Google Scholar] [CrossRef]
- Mould, F.L.; Ørskov, E.R.; Mann, S.O. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 1983, 10, 15–30. [Google Scholar] [CrossRef]
- Puhakka, L.; Jaakkola, S.; Simpura, I.; Kokkonen, T.; Vanhatalo, A. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage–based diets. J. Dairy Sci. 2016, 99, 7993–8006. [Google Scholar] [CrossRef] [PubMed]
- Rook, J.A.F. The role of carbohydrate metabolism in the regulation of milk production. Proc. Nutr. Soc. 1979, 38, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittwer, F.G.; Gallardo, P.; Reyes, J.; Opitz, H. Bulk milk urea concentrations and their relationship with cow fertility in grazing dairy herds in Southern Chile. Prev. Vet. Med. 1999, 38, 159–166. [Google Scholar] [CrossRef]
- Baker, L.D.; Ferguson, J.D.; Chalupa, W. Responses in urea and true protein of milk to different protein feeding schemes for dairy cows. J. Dairy Sci. 1995, 78, 2424–2434. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Kebreab, E.; France, J.; Beever, D.; Castillo, A. Nitrogen pollution by dairy cows and its mitigation by dietary manipulation. Nutr. Cycl. Agroecosyst. 2001, 60, 275–285. [Google Scholar] [CrossRef]
- Bauman, D.E.; Perfield, J.W.; Harvatine, K.J.; Baumgard, L.H. Regulation of fat synthesis by conjugated linoleic acid: Lactation and the ruminant model. J. Nutr. 2008, 138, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Vanhatalo, A.; Kuoppala, K.; Toivonen, V.; Shingfield, K.J. Effects of forage species and stage of maturity on bovine milk fatty acid composition. Eur. J. Lipid Sci. Tech. 2007, 108, 856–867. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaud, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- Morales-Almaráz, E.; de la Roza-Delgado, B.; González, A.; Soldado, A.; Rodríguez, M.L.; Peláez, M.; Vicente, F. Effect of feeding system on unsaturated fatty acid level in milk of dairy cows. Renew. Agric. Food Syst. 2011, 26, 224–229. [Google Scholar] [CrossRef]
- Khan, N.A.; Cone, J.W.; Fievez, V.; Hendriks, W.H. Causes of variation in fatty acid content and composition in grass and maize silages. Anim. Feed Sci. Technol. 2012, 174, 36–45. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Tech. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Magan, J.B.; O’Callaghan, T.F.; Kelly, A.L.; McCarthy, N.A. Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2769–2800. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Harris, L.J.; Dewhurst, R.J.; Merry, R.J.; Scollan, N.D. The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Anim. Sci. 2003, 76, 491–501. [Google Scholar] [CrossRef]
- Silva-Villacorta, D.; Lopez-Villalobos, N.; Blair, H.T.; Hickson, R.E.; MacGibbon, A.K. Production and profitability of dairy farms producing milk with different concentrations of unsaturated fatty acids: A simulation study. N. Z. J. Agric. Res. 2017, 60, 32–44. [Google Scholar] [CrossRef]
- Ballet, N.; Robert, J.C.; Williams, P.E.V. Vitamins in Forages. In Forage Evaluation in Ruminant Nutrition; Givens, D., Axford, R., Owenm, E., Eds.; CABI Publishing: Egham, UK, 2000; pp. 399–431. [Google Scholar]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 2007, 90, 4774–4896. [Google Scholar] [CrossRef] [PubMed]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat-soluble antioxidant concentrations in milk from high-and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
Ingredient | IR | FB | FP |
---|---|---|---|
Maize silage | 51.1 | 41.7 | 44.2 |
Italian ryegrass silage | 19.0 | -- 1 | -- |
Faba bean silage | -- | 28.6 | -- |
Fied pea silage | -- | -- | 25.3 |
Barley straw | 4.0 | 3.7 | 3.9 |
Rapeseed meal | 12.2 | 7.8 | 5.4 |
Compound feedstuff 2 | 13.7 | 18.1 | 21.2 |
Component | IR | FB | FP | Herbage | Concentrate |
---|---|---|---|---|---|
Dry Matter (DM, %) | 36.06 | 40.63 | 38.86 | 16.17 | 87.66 |
Organic Matter (% DM) | 90.51 | 89.86 | 88.43 | 90.52 | 92.24 |
Crude Protein (% DM) | 14.62 | 14.51 | 15.63 | 18.60 | 22.55 |
Starch (% DM) | 17.42 | 18.76 | 19.50 | ND 4 | 37.65 |
Neutral Detergent Fiber (% DM) | 42.40 | 41.53 | 37.63 | 44.04 | 20.22 |
Acid Detergent Fiber (% DM) | 26.81 | 24.96 | 23.75 | 21.6 | 8.37 |
Net Energy of lactation (Mcal/kg DM) | 1.56 | 1.57 | 1.57 | 1.62 | 1.96 |
Fatty Acids (g/100 g fatty acids) | |||||
10:1 cis-9 | 0.03 | 0.04 | 0.02 | 0.28 | 0.02 |
11:0 | 0.11 | 0.40 | 1.04 | 0.21 | 0.01 |
12:0 | 0.31 | 0.27 | 0.29 | 0.70 | 0.18 |
13:0 | 0.25 | 0.18 | 0.20 | 0.86 | 0.01 |
14:0 | 0.48 | 0.47 | 0.51 | 0.62 | 0.49 |
15:0 | 0.09 | 0.10 | 0.11 | 0.14 | 0.05 |
15:1 cis-10 | 0.33 | 0.23 | 0.28 | 1.33 | 0.00 |
16:0 | 16.91 | 17.79 | 19.29 | 18.19 | 25.33 |
16:1 cis-7 + 16:1 trans-9 | 0.48 | 0.47 | 0.46 | 2.31 | 0.05 |
16:1 cis-9 | 0.48 | 0.43 | 0.41 | 0.27 | 0.14 |
17:0 | 0.18 | 0.19 | 0.18 | 0.28 | 0.10 |
18:0 | 1.95 | 2.16 | 2.38 | 1.98 | 2.77 |
18:1 cis-9 | 22.32 | 21.80 | 21.89 | 3.74 | 28.09 |
18:2 cis-9 cis-12 | 38.05 | 39.94 | 40.32 | 16.50 | 39.15 |
18:3 cis-6 cis-9 cis-12 | 0.06 | 0.13 | 0.11 | 0.11 | 0.05 |
18:3 cis-9 cis-12 cis-15 | 15.72 | 12.55 | 10.07 | 49.05 | 2.37 |
20:0 | 0.50 | 0.57 | 0.60 | 0.73 | 0.29 |
20:1 cis-9 | 0.44 | 0.87 | 0.08 | 0.24 | 0.25 |
20:1 cis-11 | 0.22 | 0.23 | 0.51 | 0.31 | 0.35 |
21:0 | 0.10 | 0.11 | 0.13 | 0.17 | 0.05 |
22:0 | 0.48 | 0.48 | 0.50 | 1.08 | 0.13 |
23:0 | 0.09 | 0.10 | 0.13 | 0.15 | 0.03 |
24:0 | 0.38 | 0.41 | 0.44 | 0.65 | 0.09 |
24:1 | 0.06 | 0.09 | 0.06 | 0.11 | 0.01 |
∑ SFA 1 | 21.82 | 23.23 | 25.79 | 25.75 | 29.52 |
∑ MUFA 2 | 24.36 | 24.15 | 23.71 | 8.58 | 28.91 |
∑ PUFA 3 | 53.83 | 52.61 | 50.50 | 65.67 | 41.56 |
PUFA:SFA ratio | 2.47 | 2.27 | 1.96 | 2.55 | 1.41 |
n6:n3 ratio | 2.42 | 3.18 | 4.00 | 0.34 | 16.54 |
Antioxidants (mg/kg DM) | |||||
Neoxanthin | 0.99 | 0.7 | 0.61 | 14.97 | 0.04 |
Violaxanthin | 0.39 | 0.31 | 0.46 | 13.28 | <LQ 5 |
Antheraxanthin | 1.05 | 0.76 | 0.66 | 1.58 | 0.01 |
Lutein | 25.83 | 16.4 | 20.49 | 62.45 | 0.43 |
Zeaxanthin | 2.07 | 1.51 | 2.82 | 3.21 | 0.07 |
β-Criptoxanthin | 0.10 | 0.10 | 0.10 | 0.57 | 0.04 |
∑-trans-β-Carotenes | 5.28 | 3.15 | 2.4 | 30.81 | 0.09 |
9-cis-β-Carotenes | 1.76 | 1.1 | 0.5 | 6.28 | 0.06 |
13-cis-β-Carotenes | 0.60 | 0.44 | 0.34 | 3.44 | 0.08 |
α-tocopherol | 7.22 | 6.91 | 7.11 | 9.64 | 2.83 |
γ-tocopherol | 3.46 | 3.34 | 2.83 | 1.60 | 4.29 |
Component | IR | FB | FP | IR + G | FB + G | FP + G | SD | D | G | D∗G |
---|---|---|---|---|---|---|---|---|---|---|
Total mixed ration | 18.65 a | 19.94 a | 20.12 a | 9.24 b | 9.48 b | 9.88 b | 4.321 | 0.000 | 0.000 | 0.928 |
Concentrate | 2.78 a | 2.82 a | 2.80 a | 2.59 c | 2.60 c | 2.68 b | 0.074 | 0.000 | 0.000 | 0.195 |
Herbage | 0.00 | 0.00 | 0.00 | 12.17 b | 16.24 a | 10.47 b | 4.205 | 0.000 | NA 4 | NA |
Total DMI 1 | 21.43 b | 22.76 ab | 22.92 ab | 24.00 ab | 28.32 a | 23.04 ab | 5.714 | 0.187 | 0.084 | 0.367 |
Milk (kg/d) | 28.25 | 28.46 | 27.91 | 30.15 | 30.13 | 30.10 | 4.156 | 0.706 | 0.096 | 0.983 |
Fat (g/kg) | 4.14 | 4.36 | 4.31 | 4.14 | 4.07 | 4.17 | 0.383 | 0.564 | 0.177 | 0.512 |
Protein (g/kg) | 3.76 a | 3.63 ab | 3.61 abc | 3.52 bc | 3.46 c | 3.54 bc | 0.156 | 0.004 | 0.001 | 0.280 |
Lactose (g/kg) | 4.75 | 4.74 | 4.78 | 4.78 | 4.83 | 4.76 | 0.142 | 0.784 | 0.389 | 0.480 |
NFS 2 (g/kg) | 9.32 a | 9.16 ab | 9.17 ab | 9.07 b | 9.06 b | 9.07 b | 0.176 | 0.025 | 0.003 | 0.397 |
Urea (mg/kg) | 253 | 272 bc | 325 a | 234 d | 238 cd | 278 b | 33.4 | 0.000 | 0.000 | 0.474 |
SCC 3 (×1000/mL) | 40 | 66 | 42 | 138 | 173 | 196 | 194.2 | 0.357 | 0.028 | 0.898 |
Fatty Acid | IR | FB | FP | IR + G | FB + G | FP + G | SD | D | G | D∗G |
---|---|---|---|---|---|---|---|---|---|---|
4:0 | 5.08 a | 5.23 a | 5.31 a | 4.57 ab | 4.33 b | 4.17 ab | 0.381 | 0.056 | 0.004 | 0.678 |
6:0 | 2.44 ab | 2.41 ab | 2.48 a | 2.22 bc | 2.13 c | 2.22 bc | 0.125 | 0.028 | 0.001 | 0.926 |
8:0 | 1.30 a | 1.23 ab | 1.28 ab | 1.22 ab | 1.18 b | 1.19 b | 0.050 | 0.093 | 0.011 | 0.818 |
10:0 | 3.16 | 2.87 | 2.93 | 3.03 | 2.88 | 2.92 | 0.184 | 0.417 | 0.619 | 0.766 |
10:1 cis-9 | 0.46 | 0.41 | 0.46 | 0.40 | 0.43 | 0.41 | 0.035 | 0.220 | 0.067 | 0.201 |
11:0 | 0.10 | 0.08 | 0.08 | 0.09 | 0.07 | 0.07 | 0.016 | 0.323 | 0.545 | 0.989 |
12:0 | 3.94 | 3.41 | 3.58 | 3.76 | 3.58 | 3.62 | 0.279 | 0.328 | 0.817 | 0.546 |
12:0 iso | 0.14 | 0.11 | 0.12 | 0.12 | 0.12 | 0.11 | 0.020 | 0.658 | 0.529 | 0.498 |
12:0 anteiso | 0.03 b | 0.04 b | 0.04 b | 0.05 a | 0.05 a | 0.05 a | 0.004 | 0.000 | 0.000 | 0.141 |
12:1 | 0.18 | 0.15 | 0.16 | 0.17 | 0.17 | 0.16 | 0.022 | 0.812 | 0.865 | 0.538 |
13:0 | 0.16 | 0.14 | 0.13 | 0.14 | 0.13 | 0.13 | 0.023 | 0.706 | 0.431 | 0.929 |
13:0 iso | 0.17 abc | 0.20 ab | 0.21 a | 0.15 c | 0.17 bc | 0.16 bc | 0.018 | 0.038 | 0.005 | 0.602 |
14:0 | 12.11 | 11.48 | 11.55 | 11.82 | 12.01 | 12.08 | 0.549 | 0.609 | 0.347 | 0.365 |
14:0 iso | 0.27 b | 0.29 b | 0.27 b | 0.33 a | 0.34 a | 0.33 a | 0.019 | 0.001 | 0.000 | 0.788 |
14:1 cis-9 | 1.29 | 1.13 | 1.23 | 1.11 | 1.21 | 1.16 | 0.109 | 0.390 | 0.275 | 0.171 |
14:0 anteiso | 0.59 b | 0.62 b | 0.59 b | 0.72 a | 0.73 a | 0.70 a | 0.042 | 0.003 | 0.000 | 0.888 |
15:0 | 1.23 | 1.17 | 1.16 | 1.19 | 1.17 | 1.16 | 0.097 | 0.957 | 0.785 | 0.917 |
15:0 iso | 0.39 b | 0.49 a | 0.47 a | 0.38 b | 0.39 b | 0.38 b | 0.033 | 0.004 | 0.001 | 0.087 |
15:1 cis-10 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.002 | 0.143 | 0.124 | 0.098 |
16:0 | 34.05 | 31.61 | 32.88 | 27.44 | 27.80 | 28.26 | 1.422 | 0.001 | 0.000 | 0.263 |
16:1 cis-7 + 18:1 trans | 0.18 b | 0.18 b | 0.16 b | 0.24 a | 0.23 a | 0.22 a | 0.018 | 0.002 | 0.000 | 0.735 |
16:1 cis-9 | 2.04 | 1.87 | 1.94 | 1.61 | 1.69 | 1.65 | 0.274 | 0.367 | 0.042 | 0.740 |
16:0 iso | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.004 | 0.399 | 0.175 | 0.725 |
16:1 cis-11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.003 | 0.920 | 0.589 | 0.625 |
16:0 anteiso | 0.37 c | 0.42 ab | 0.39 bc | 0.43 a | 0.43 a | 0.41 ab | 0.021 | 0.021 | 0.006 | 0.144 |
17:0 | 0.48 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.020 | 0.469 | 0.243 | 0.356 |
17:1 cis-9 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.019 | 0.994 | 0.605 | 0.986 |
18:0 | 6.71 b | 8.22 a | 7.63 ab | 8.89 a | 8.17 a | 8.11 ab | 0.778 | 0.090 | 0.039 | 0.077 |
18:1 trans-4 + 18:1 trans-5 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.002 | 0.771 | 0.289 | 0.669 |
18:1 trans-6 + 18:1 trans-9 | 0.40 b | 0.49 a | 0.44 ab | 0.45 ab | 0.48 a | 0.45 ab | 0.041 | 0.222 | 0.377 | 0.421 |
18:1 trans-10 | 0.28 | 0.31 | 0.27 | 0.29 | 0.29 | 0.27 | 0.029 | 0.540 | 0.962 | 0.630 |
18:1 trans-11 | 0.86d | 1.12 c | 0.93 cd | 3.22 b | 3.42 ab | 3.54 a | 0.138 | 0.000 | 0.000 | 0.158 |
18:1 trans-12 | 0.25 c | 0.32 a | 0.25 c | 0.27 abc | 0.30 ab | 0.27 bc | 0.027 | 0.050 | 0.686 | 0.472 |
18:1 trans-13 + 18:1 trans-14 | 0.32 | 0.35 | 0.33 | 0.33 | 0.34 | 0.28 | 0.038 | 0.386 | 0.338 | 0.502 |
18:1n9 cis-9 | 15.80 d | 17.29 bc | 16.79 cd | 18.28 ab | 18.42 a | 17.87 ab | 0.590 | 0.002 | 0.000 | 0.114 |
18:1 cis-10 + 18:1 trans-15 | 0.22 | 0.24 | 0.22 | 0.23 | 0.25 | 0.24 | 0.029 | 0.856 | 0.399 | 0.885 |
18:1n7 cis-11 | 0.56 | 0.55 | 0.50 | 0.58 | 0.56 | 0.53 | 0.052 | 0.577 | 0.440 | 0.951 |
18:1 cis-12 | 0.22 ab | 0.26 a | 0.26 a | 0.16 b | 0.18 b | 0.16 b | 0.032 | 0.009 | 0.001 | 0.598 |
18:1 trans-16 | 0.21 c | 0.30 b | 0.24 c | 0.34 ab | 0.37 a | 0.31 b | 0.025 | 0.000 | 0.000 | 0.130 |
18:2 trans-9, trans-12 | 0.04 b | 0.05 b | 0.04 b | 0.07 a | 0.08 a | 0.08 a | 0.009 | 0.001 | 0.000 | 0.934 |
18:2 cis-9, cis-12 | 1.65 | 1.83 | 1.81 | 1.49 | 1.51 | 1.54 | 0.176 | 0.129 | 0.012 | 0.729 |
c9.t11-CLA | 0.54 c | 0.60 c | 0.52 c | 1.48 b | 1.67 a | 1.67 ab | 0.100 | 0.000 | 0.000 | 0.236 |
Other CLA | 0.17 c | 0.22 a | 0.19 b | 0.19 b | 0.23 a | 0.19 b | 0.013 | 0.001 | 0.065 | 0.297 |
CLA trans, trans | 0.03 b | 0.03 b | 0.03 b | 0.08 a | 0.09 a | 0.07 a | 0.011 | 0.000 | 0.000 | 0.311 |
18:3 (n3) | 0.35 b | 0.37 b | 0.34 b | 0.56 a | 0.56 a | 0.56 a | 0.051 | 0.000 | 0.000 | 0.830 |
18:3 (n6) | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.006 | 0.476 | 0.111 | 0.916 |
20:0 | 0.16 | 0.25 | 0.21 | 0.22 | 0.16 | 0.15 | 0.065 | 0.403 | 0.360 | 0.176 |
20:1 cis-9 | 0.00 c | 0.01 bc | 0.00 c | 0.02 ab | 0.02 a | 0.02 a | 0.005 | 0.001 | 0.000 | 0.831 |
20:1n9 cis-11 | 0.03 b | 0.05 ab | 0.03 b | 0.04 ab | 0.06 a | 0.04 b | 0.011 | 0.031 | 0.016 | 0.847 |
20:3 | 0.26 a | 0.24 a | 0.26 a | 0.19 b | 0.17 b | 0.17 b | 0.015 | 0.000 | 0.000 | 0.636 |
20:5 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.003 | 0.888 | 0.649 | 0.881 |
20:2 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.005 | 0.398 | 0.264 | 0.532 |
20:3 | 0.15 a | 0.15 a | 0.15 a | 0.10 b | 0.10 b | 0.09 b | 0.018 | 0.002 | 0.000 | 0.717 |
20:4 | 0.02 ab | 0.03 a | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.004 | 0.044 | 0.048 | 0.163 |
21:0 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.005 | 0.203 | 0.405 | 0.051 |
22:0 | 0.03 d | 0.05 b | 0.05 c | 0.06 a | 0.06 a | 0.06 b | 0.003 | 0.000 | 0.000 | 0.000 |
22:5 | 0.09 | 0.08 | 0.10 | 0.10 | 0.09 | 0.09 | 0.012 | 0.644 | 0.842 | 0.432 |
22:6 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.006 | 0.813 | 0.905 | 0.876 |
22:2 | 0.05 bc | 0.04 c | 0.04 c | 0.07 a | 0.06 ab | 0.07 a | 0.009 | 0.004 | 0.000 | 0.607 |
23:0 | 0.03 c | 0.03 abc | 0.03 bc | 0.04 abc | 0.04 a | 0.04 ab | 0.005 | 0.041 | 0.005 | 0.979 |
24:0 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.009 | 0.225 | 0.530 | 0.172 |
24:1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.004 | 0.777 | 0.852 | 0.433 |
∑ SFA 1 | 71.05 a | 68.80 b | 69.83 ab | 65.29 c | 64.35 c | 65.31 c | 1.128 | 0.000 | 0.000 | 0.552 |
∑ BFA 2 | 1.97 b | 2.17 | 2.09 ab | 2.21 a | 2.24 a | 2.16 ab | 0.098 | 0.073 | 0.023 | 0.290 |
∑ MUFA 3 | 23.53 b | 25.29 b | 24.48 b | 28.08 a | 28.76 a | 27.90 a | 0.937 | 0.000 | 0.000 | 0.527 |
∑ MUFA cis | 20.76 b | 21.92 ab | 21.58 ab | 22.55 a | 22.93 a | 22.19 a | 0.719 | 0.048 | 0.007 | 0.390 |
∑ MUFA trans | 2.37 c | 2.95 b | 2.52 bc | 5.06 a | 5.36 a | 5.26 a | 0.260 | 0.000 | 0.000 | 0.521 |
MUFA cis + trans | 0.40 bc | 0.42 abc | 0.38 c | 0.47 a | 0.47 a | 0.46 | 0.034 | 0.037 | 0.002 | 0.816 |
∑ PUFA 4 | 3.44 b | 3.74 b | 3.59 b | 4.43 a | 4.65 a | 4.63 a | 0.249 | 0.000 | 0.000 | 0.915 |
Σ CLA 5 | 0.74 c | 0.85 c | 0.75 c | 1.76 b | 1.99 a | 1.93 ab | 0.107 | 0.000 | 0.000 | 0.415 |
∑ n6 | 1.98 ab | 2.17 a | 2.13 ab | 1.81 b | 1.81 b | 1.86 ab | 0.180 | 0.112 | 0.010 | 0.682 |
∑ n3 | 0.72 bc | 0.71 c | 0.71 c | 0.86 a | 0.84 ab | 0.84 ab | 0.060 | 0.023 | 0.001 | 0.990 |
PUFA:SFA ratio | 0.05 b | 0.05 b | 0.05 b | 0.07 a | 0.07 a | 0.07 a | 0.004 | 0.000 | 0.000 | 0.956 |
n6:n3 ratio | 2.74 a | 3.05 a | 2.99 a | 2.13 b | 2.16 b | 2.22 b | 0.186 | 0.000 | 0.000 | 0.450 |
UFA:SFA ratio | 0.38 b | 0.42 b | 0.40 b | 0.50 a | 0.52 a | 0.50 a | 0.023 | 0.000 | 0.000 | 0.652 |
18:1 trans-11:trans-10 ratio | 3.15 c | 3.66 c | 3.36 c | 11.01 b | 11.65 b | 13.26 a | 0.661 | 0.000 | 0.000 | 0.040 |
Antioxidant | IR | FB | FP | IR + G | FB + G | FP + G | SD | D | G | D∗G |
---|---|---|---|---|---|---|---|---|---|---|
Retinol | 852 | 747 | 893 | 771 | 721 | 827 | 233.3 | 0.698 | 0.611 | 0.978 |
α-Tocopherol | 1005 | 1171 | 1181 | 1372 | 1412 | 1645 | 303.0 | 0.231 | 0.031 | 0.820 |
γ-Tocopherol | 89.6 bc | 99.0 ab | 128.7 a | 59.5 d | 66.9 cd | 61.4 cd | 16.30 | 0.003 | 0.000 | 0.135 |
Lutein | 7.67 b | 11.09 b | 8.53 b | 25.72 a | 30.39 a | 21.48 ab | 7.449 | 0.014 | 0.001 | 0.744 |
Zeaxanthin | 0.71 | 0.76 | 0.57 | 1.84 | 1.67 | 1.76 | 0.795 | 0.227 | 0.017 | 0.948 |
β-Cryptoxanthin | 1.83 b | 1.51 b | 1.39 b | 3.09 a | 3.55 a | 3.33 a | 0.583 | 0.002 | 0.083 | 0.480 |
All-trans-β-Carotene | 148.5 | 149.6 | 119.4 | 217.5 | 242.0 | 245.0 | 69.49 | 0.194 | 0.015 | 0.782 |
9-cis-β-Carotene | 0.92 b | 1.08 b | 0.57 b | 1.35 ab | 2.03 ab | 2.72 a | 0.831 | 0.082 | 0.013 | 0.233 |
13-cis-β-Carotene | 3.30 | 3.90 | 2.38 | 6.22 | 6.75 | 7.55 | 2.635 | 0.181 | 0.015 | 0.696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Torre-Santos, S.; Royo, L.J.; Martínez-Fernández, A.; Menéndez-Miranda, M.; Rosa-García, R.; Vicente, F. Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk. Dairy 2021, 2, 716-728. https://doi.org/10.3390/dairy2040055
De La Torre-Santos S, Royo LJ, Martínez-Fernández A, Menéndez-Miranda M, Rosa-García R, Vicente F. Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk. Dairy. 2021; 2(4):716-728. https://doi.org/10.3390/dairy2040055
Chicago/Turabian StyleDe La Torre-Santos, Senén, Luis J. Royo, Adela Martínez-Fernández, Mario Menéndez-Miranda, Rocío Rosa-García, and Fernando Vicente. 2021. "Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk" Dairy 2, no. 4: 716-728. https://doi.org/10.3390/dairy2040055
APA StyleDe La Torre-Santos, S., Royo, L. J., Martínez-Fernández, A., Menéndez-Miranda, M., Rosa-García, R., & Vicente, F. (2021). Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk. Dairy, 2(4), 716-728. https://doi.org/10.3390/dairy2040055